L2EP

L2EP Logo

LABORATORY OF ELECTRICAL ENGINEERING AND POWER ELECTRONICS

Research – Development – Innovation

Soutenance de thèse, Leysmir A. MILLAN MIRABAL, 28 Juin 2022

Contribution à la caractérisation et à la modélisation 3D de l’anisotropie des aciers électriques à grains orientés en vue du calcul des pertes aux extrémités des turbo-alternateurs

Le mardi 28 juin 2022  à 9h00, dans l’amphithéâtre ATRIUM, Bât. ESPRIT.

Résumé :

Récemment, les gestionnaires de réseau et de système de transmission, comme le Réseau européen des gestionnaires de réseau de transport d’électricité (ENTSO-E), mettent en place des réglementations pour étendre la plage de fonctionnement des équipements connectés au réseau électrique. Les principaux objectifs de ces modifications sont : d’augmenter la flexibilité du réseau en le rendant capable de supporter des variations de fréquence et de tension (dues aux modifications de l’équilibre des puissances active et réactive) et de faciliter l’intégration et la production d’énergie renouvelable.  Cependant, de nombreux équipements installés et raccordés au réseau n’ont pas été conçus pour être exploités dans ces plages de fonctionnement et leur utilisation dans ces conditions peut avoir un impact négatif sur le cycle de vie des équipements, en particulier dans les turbo-alternateurs.

Les grands turbo-alternateurs, utilisés pour la production d’électricité dans les centrales nucléaires et hydroélectriques, sont impactés par ces nouvelles réglementations. Cet impact est particulièrement observé aux extrémités de ces machines électriques où les pertes fer sont susceptibles d’augmenter significativement. Ces pertes peuvent entraîner des échauffements, notamment des points chauds, qui peuvent conduire à la fusion de l’isolation entre les tôles du noyau du stator, provoquant ainsi des courts-circuits et des dommages irréversibles à l’équipement. Afin de pouvoir analyser et limiter l’impact des mécanismes physiques mis en jeu, la société EDF s’appuie sur des simulations numériques tridimensionnelles de la machine électrique pour calculer les pertes pour différents régimes de fonctionnement.

Une partie de ce travail a déjà été réalisée au laboratoire L2EP, où le logiciel d’analyse par éléments finis code_Carmel a été adapté pour le calcul des pertes dans le noyau du stator et des pertes joule dans les modèles tridimensionnels. Cependant, la complexité physique des propriétés des circuits magnétiques aux extrémités des turbo-alternateurs doit être prise en compte pour obtenir des résultats fiables. En effet, compte tenu du schéma tridimensionnel du chemin du flux magnétique et des propriétés fortement anisotropes du circuit magnétique en acier électrique à grains orientés (GO), la description des pertes fer nécessite des modèles de matériaux magnétiques anisotropes précis combinés à une modélisation numérique efficace.

Dans le cadre de ce travail de thèse, des modèles anisotropes dédiés aux aciers GO, notamment pour décrire la loi de comportement et les pertes fer, ont été étudiés puis implémentés dans un environnement de simulation par éléments finis (FEM) au sein du logiciel code_Carmel. La mise en œuvre a été validée par rapport à des données expérimentales obtenues sur un acier GO de qualité industrielle conventionnelle généralement utilisée dans les turbo-alternateurs. De plus, un démonstrateur expérimental a été développé pour étudier plus finement le comportement magnétique d’un empilement de tôles GO soumis à des excitations de flux magnétique 3D non conventionnelles. Un modèle numérique du démonstrateur expérimental a été développé et étudié, incluant les modèles de matériaux anisotropes, en comparant le comportement global du matériau GO ainsi que les pertes de fer dans l’échantillon d’intérêt.

Les résultats montrent que, dans des configurations d’attaque de flux magnétique non conventionnelles, en particulier avec une attaque de flux magnétique normale au plan de laminage, les caractéristiques anisotropes de l’acier GO peuvent influencer la distribution du flux magnétique dans l’empilement de tôles étudié ainsi que les pertes de fer associées. Notamment, et comme attendu, les pertes par courants de Foucault classiques constituent la contribution majeure aux pertes fer dans l’empilement de tôles étudiées.

Mots clés : Aciers électriques à grains orientésAnisotropie, Pertes fer, 3D FE modelling, turbo-generateurs