L2EP

L2EP Logo

LABORATOIRE D'ELECTROTECHNIQUE ET D'ELECTRONIQUE DE PUISSANCE DE LILLE

Recherche, Développement et Innovation en Génie Electrique

Soutenance de thèse, Caio FONSECA DE FREITAS, 29 juin 2023

Hybridation de batteries puissance-énergie avec convertisseur de couplage à dimensionnement réduit : Application aux véhicules électriques urbains

Le jeudi 29 mars 2023  à 10h00,

Lieu : Centrale Lille Institut Cité Scientifique CS20048 59651 Villeneuve d’Ascq
Salle : Amphithéâtre Cuccaroni

Résumé

Le véhicule électrique (VE) est un mode de transport en plein essor du fait des contraintes environnementales. Son développement est étroitement lié à l’évolution des technologies de batteries : on leur demande d’être plus efficientes, moins coûteuses et également moins dépendantes de matériaux critiques tels que le lithium et le cobalt. Dans les VE actuels, l’autonomie est un point critique et les constructeurs ont tendance à privilégier des autonomies largement supérieures aux besoins réels de déplacement. Ce choix favorise l’utilisation de batteries de type énergie (EB) possédant une forte densité d’énergie (ED), mais une densité de puissance (PD) limitée. Ce type de batterie est parfaitement adapté aux grandes autonomies, la faible PD étant compensée par une masse importante de batterie embarquée. Ainsi, ces VE sont capables de supporter des dynamiques de puissance élevées : fortes accélérations, freinage électrique efficace. Si on veut démocratiser l’utilisation du VE, tout en limitant l’impact sur l’environnement, d’autres solutions doivent être envisagées. Une des clés principales est le développement de VE plus légers avec une autonomie raisonnable. Mais si l’EB est plus petite, sa PD limite alors la dynamique du véhicule et surtout son freinage récupératif. Les systèmes hybrides de stockage d’énergie (HESS – Hybrid Energy Storage System) peuvent résoudre ce problème. Ils combinent deux sources de stockage : une première à forte ED, associée à une seconde à forte PD. De plus, ces HESS permettent de pouvoir mixer et donc diversifier les technologies de stockeurs d’énergie. Leur principal défaut est de nécessiter la présence de convertisseurs d’électronique de puissance afin de répartir la puissance du véhicule entre les deux sources du HESS. Cette masse supplémentaire dégrade les performances du HESS en densité d’énergie et de puissance. Il est donc nécessaire de réduire autant que possible la masse de ce convertisseur supplémentaire. L’objet de cette thèse est l’étude du dimensionnement du couple EB-PB associé à un convertisseur DC-DC à puissance de dimensionnement réduite comparativement aux solutions traditionnelles. Afin d’étudier le système HESS complet, une méthode de dimensionnement du couple de batteries EB-PB est proposée. Ensuite, en vue de réduire la masse du convertisseur de couplage, deux architectures originales de HESS sont proposées : une architecture série et une architecture cascade à source de courant contrôlée. Elles ont pour objectif la réduction de la puissance transitée dans le convertisseur de couplage. Ces architectures nécessitent l’utilisation d’un convertisseur similaire, à savoir un DC/DC isolé, dont les contraintes électriques dépendent de l’architecture choisie. Afin d’évaluer la puissance de dimensionnement du convertisseur, une stratégie de gestion d’énergie adaptée à chaque architecture est proposée et utilisée. Ces stratégies permettent de dimensionner en puissance le convertisseur de couplage selon le couple de batteries choisies en simulant le cycle de conduite. Les simulations valident le dimensionnement du HESS complet : EB, PB et DC-DC isolé. Elles montrent ainsi que la puissance de dimensionnement peut être réduite de plus de 90% par rapport à une architecture de couplage classique. Les deux architectures de couplages sont ensuite validées en laboratoire sur un banc expérimental.

Mots clés 

Convertisseur DC-DC, Système hybride de stockage d’énergie, Véhicules électriques