Fiche individuelle
Yorgo LABA | ||
Titre | Doctorant | |
Equipe | Réseaux | |
Adresse | Arts et Métiers ParisTech - Campus Lille 8, boulevard Louis XIV 59046 LILLE CEDEX | |
Téléphone | +33 (0)3-XX-XX-XX-XX | |
yorgo.laba@centralelille.fr | ||
Site personnel | https://www.linkedin.com/in/yorgo-laba/ | |
Réseau scientifique | https://www.researchgate.net/profile/Yorgo-Laba | |
Publications |
ACLI Revue internationale avec comité de lecture |
---|
[1] Promises and challenges of grid forming: Transmission system operator, manufacturer and academic view points Electric Power Systems Research, Vol. 235, pages. 30, 07/2024, URL, Abstract CARDOZO Carmen, PREVOST Thibault, HUANG Shun-Hsien, LU Jingwei, MODI Nilesh, HISHIDA Masaya, LI Xiaoming, ABDALRAHMAN Adil, SAMUELSSON Pär, VAN CUTSEM Thierry, LABA Yorgo, LAMRANI Yahya, COLAS Frédéric, GUILLAUD Xavier |
With the increasing penetration of power electronic converters in the power system induced by the energy transition, Grid Forming (GFM) technology emerges as crucial for complementing traditional synchronous generators in fulfilling system needs. All over the world, TSOs have started introducing performance-based requirements to define the desired behaviour of GFM units without prescribing specific technical solutions. Based on these specifications, manufacturers design their grid-connected equipment. However, depending on requirements, challenges may arise in optimizing control strategies without hardware modifications, potentially becoming cost-driving factors. Intellectual property protection limits information disclosure, restricting the guidance available to TSOs during cost–benefit assessments. Academic contributions on GFM control and generic models can bridge the gap, providing a fair portrayal of the general behaviour and then facilitates an open discussion on their ability to meet the requirements and contribute to fulfil system needs. This survey paper provides a comprehensive overview of the perspectives offered by these diverse stakeholders. |
ACT Conférence internationale avec acte |
[1] Re-Energization of a Power System with a Distribution Network CIRED Workshop on Resilience of Electric Distribution Systems, 11/2024, URL, Abstract LABA Yorgo, COLAS Frédéric, BRUYERE Antoine, GUILLAUD Xavier, LEGRAND Xavier, PREVOST Thibault, TORRESAN Gilles |
The evolving energy mix increasingly integrates variable renewable energy systems into power grids, prompting the exploration of alternative black-start approaches at the distribution network. This study focuses on the use of distributed resources connected via power electronics converters to supply loads at the distribution level through transformers, following a blackout of the transmission system. Energizing transformers generates high unbalanced inrush currents with harmonics due to iron core saturation, posing a significant challenge. Unlike synchronous machines, power electronic converters cannot support large inrush currents. This paper demonstrates a grid-forming control that provides high-quality voltage while protecting the converter by limiting the inrush current. A benchmark is then implemented to illustrate the use of grid-forming to energize multiple transformers during a distributed black-start. It also demonstrates the ability of the proposed grid-forming to synchronize with an existing grid. |
[2] Virtual Power-Based Technique for Enhancing the Large Voltage Disturbance Stability of HV Grid-Forming Converters 2023 25th European Conference on Power Electronics and Applications (EPE'23 ECCE Europe), 09/2023, URL, Abstract LABA Yorgo, BRUYERE Antoine, COLAS Frédéric, GUILLAUD Xavier |
Grid-forming control plays an essential role in the modernization of HV electrical transmission grids, particularly in mitigating challenges imposed by large voltage disturbances. In this context, the concept of virtual power has gained prominence as a potential approach that improves stability following such disturbances. This paper illustrates the use of virtual power method in enhancing the large disturbance stability given by the grid-forming control. An adaptive virtual impedance is also proposed to further improve system dynamics. The methods are evaluated through large disturbance stability analysis and time-domain simulations. |
[3] PQ Decoupling on Grid-Forming Converter Connected to a Distribution Network 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 06/2022, URL, Abstract LABA Yorgo, BRUYERE Antoine, COLAS Frédéric, GUILLAUD Xavier |
In recent years, several works on grid-forming converters in transmission networks have been performed. Since these high voltage grids are mainly inductive, a natural decoupling exists between active and reactive power controls. This decoupling facilitates the design and the performance of the grid-forming controllers. However, in distribution applications, it is well known that the R/X ratio of the line impedance is substantially higher, preventing the system from a natural decoupling effect. This paper proposes an original solution to decouple the control and gives an application to a low voltage connection of a grid-forming converter. |
[4] Operating Grid-Forming Control on Automotive Reversible Battery Charger 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), pages. 6, 10/2021, URL, Abstract LABA Yorgo, BRUYERE Antoine, COLAS Frédéric, GUILLAUD Xavier, SILVESTRE Bénédicte |
Nowadays, the production of electric energy is evolving towards decentralized systems by an increasingly advanced integration of new active loads such as electric vehicles and renewable energy sources. This energy transition involves the use of power electronics converters to regulate energy exchanges. In this context, this paper brings the L2EP knowledge on grid-forming control developed in a high-voltage context to the ValeoSiemens reversible charger. This comprises two significant differences in the sizing of the system: a lower grid connection impedance and a resistive aspect of the distribution network. To overcome these challenges, this paper proposes two techniques: the virtual impedance to compensate the low value of connection impedance and dynamic decoupling of active and reactive power to consider the resistive effect of the distribution network. |
Le L2EP recrute
Dernières actualités
- Soutenance de Thèse, Wei CHEN, 29 Nov. 2024
- Séminaire, Pr. Hajime IGARASHI (Hokkaido University, Japan), 28 Nov. 2024
- Séminaire, Dr. Nathan WILLIAMS, Nov. 25, 2024
- Soutenance de Thèse, Ghazala SHAFIQUE, 21 Nov. 2024
- Soutenance de thèse, Yahya LAMRANI, 30 Octobre 2024
- Séminaire JCJC, 25 octobre 2024
- Soutenance de thèse, Othmane MARBOUH, 23 octobre 2024
- Visite du HCERES, 16 et 17 Octobre 2024
- Séminaire, Dr. Alessandro Formisano, Sept. 23, 2024
- Réunion d’information: Valorisation des résultats de recherche / SATT Nord, 18 Sept. 2024