Fiche individuelle
Ayoub AINOUZ | ||
| Titre | Doctorant | |
| Equipe | Outils et Méthodes Numériques | |
| Adresse | L2EP Bâtiment ESPRIT Avenue Henri Poincaré 59650 Villeneuve d'Ascq | |
| ayoub.ainouz@univ-lille.fr | ||
| Publications | ||
ACT Conférence internationale avec acte |
|---|
| [1] A Hybrid Approach Based on the Jiles-Atherton Model and Artificial Intelligence for Modelling the Dynamic Hysteresis of Electrical Steels The 27th International Conference on Soft Magnetic Materials, 09/2025, Abstract AINOUZ Ayoub, TANG Zuqi, BENABOU Abdelkader |
This study presents a hybrid approach combining the Jiles-Atherton (JA) physical model with a feedforward neural network (FFNN) to enhance the modelling accuracy and computational efficiency of magnetic properties in electrical steels. Traditional JA models face limitations in handling dynamic and multi-physical conditions. By integrating a neural network to correct the residual error of the JA model, the proposed method achieves significant improvements in predicting both static and dynamic hysteresis loops. Hyperparameter optimization reduces the error compared to standalone JA simulations. Results demonstrate that the prediction of the hybrid model maintains physical interpretability while leveraging machine learning for rapid adaptation to complex scenarios, achieving errors below 1% in static cases and robust performance in dynamic cases. |
Le L2EP recrute
Dernières actualités
- Journée L2EP, 3ème année de Thèse, 5 Mars 2029
- Soutenance de thèse, Johan BOUKHENFOUF, 25 Fév. 2026
- Twin-Powered EV Drives: MAXIMA leads E-VOLVE Cluster workshop on digital twins, 2026 FEb. 19
- 2026 CUMIN Workshop, 3 et 4 Fév. 2026
- Séminaire JCJC, 30 Janv. 2026
- Assemblée Générale du Laboratoire, 23 janvier 2026
- Soutenance de Thèse, Amira DHORBANI, 22 décembre 2025
- Prix jeune chercheur, Cyril MICHEL
- Séminaire JCJC, 19 Déc. 2025
- Soutenance de Thèse, Mhamad SHMAYSANI, 15 Déc. 2025






