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ABSTRACT Intermittent renewable energy sources (RES) generate variable power that cannot be fully 

predicted by advanced forecasting tools. Fortunately, re-schedulable conventional generators can contribute 

to the power balancing. However, the rescheduling usually leads to abrupt operations of fuel-based fast 

generators, which will induce an increase of fuel costs and CO2 emissions. This paper presents a general 

operational planning framework for controllable generators, one day ahead, under uncertain renewable energy 

generation. The planning objective consists on minimizing operating costs and/or equivalent carbon dioxide 

(CO2) emissions. The uncertainty is handled by a two-stage method:  past error predictions are analyzed by a 

probabilistic approach and then possible future error predictions are considered through scenarios.  Based on 

distributions of forecasting errors of the net demand, a loss of load probability-(LOLP) based risk assessment 

method is proposed to determine an appropriate amount of operating reserve (OR) for each time step of the 

next day. The effect of photovoltaic (PV) power generation uncertainty on operating decisions is examined 

by incorporating expected possible uncertainties into a two-stage unit commitment optimization. In a first 

stage, a deterministic optimization within a mixed-integer linear programming (MILP) method generates the 

unit commitment of controllable generators with the day-ahead PV and load demand prediction and the 

prescribed OR requirement. In the second stage, possible future forecasting uncertainties are considered. 

Hence, a stochastic operational planning is considered and optimized in order to commit enough flexible 

generators for reserve provision to handle unexpected deviations from predictions. Most of all, through the 

presented security-constrained two-stage optimization, OR is optimally scheduled (by using PV generators 

and conventional generators) to reach the minimum costs and CO2 emissions by considering PV panel 

characteristics and stochastic nature of PV production. The proposed methodology is implemented for a local 

energy community. Results regarding the available operating reserve, operating costs and CO2 emissions are 

established and compared. About 15% of economic operating costs and environmental costs are saved, 

compared to a deterministic generation planning while ensuring the targeted security level. 

INDEX TERMS Decision making, generator scheduling, probabilistic modelling, renewable energy, 
reserve allocation, stochastic optimization, uncertainty, unit commitment, urban energy system

NOMENCLATURE 
A. ACRONYMS 

BPNN Back-propagation neural networks 

CCUC Chance-constrained unit commitment 

CHP Combined Heat and Power 

CI Confidence intervals 

DUC Deterministic unit commitment 

LOLP Loss of load probability 
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MGT Micro gas turbine 

MIP Mixed-integer programming 

MILP Mixed-integer linear programming 

MPP Maximum power point 

OR Operating reserve 

pdf Probability Density Function 

RES Renewable energy sources 

RUC Robust unit commitment 

SD Standard deviation 

SUC Stochastic unit commitment 

�� Photovoltaic 

PV AG Photovoltaic active generator 

UC Unit commitment 
 
B. DECISION VARIABLES 

��,�(�) Commitment of generator m in scenario 
 at time 

step t; ��,�(�) ∈ {0,1} 

��,�(�) Generator m is starting up at the beginning of time 

step t in scenario 
; ��,�(�) ∈ {0,1} 

��,�(�) Generator m is shutting down at the beginning of 

time step t in scenario 
; ��,�(�) ∈ {0,1} 

��,�(�) The power generation set point of generator m in 

scenario 
 at time step t. 

��,�(�) The allocated reserve power of generator m in 

scenario 
 at time step t. 
 
C. TIME SERIES 

��(�) The net demand forecast in scenario 
 at time step 

t, the difference between the total load demand 

forecast and photovoltaic generation forecast. 

� �(�) Expected operating reserve requirements for the 

electrical system in scenario 
 at time step t. 

Parameters 
� The risk index of LOLP (Loss of Load 

Probability). 

��,

�� 

The minimum and maximum power generation 
limits of generator m. 

�� Probability of scenario 
. 
���  The start-up penalties on operating costs. 

���  The shutdown penalties on operating costs. 

����  The start-up penalties on emission costs. 

����  The shutdown penalties on emission costs. 
 
D. SETS AND INDICES 

ℳ Set of conventional generators. 

ℳ���  Set of slow-start conventional generators. 

ℳ!"�# Set of fast-start conventional generators. 

$ Set of time steps. 

% Set of scenarios. 

& Feasible set of ��(�)  under deterministic 

algorithm, or ��,�(�) under stochastic algorithm.  

� Feasible set of ��(�)  under deterministic 

algorithm, or ��,�(�) under stochastic algorithm. 

� Feasible set of ��(�)  under deterministic 

algorithm, or ��,�(�) under stochastic algorithm. 

ℱ Set of feasible solutions, &, �, � ∈ ℱ. 

 
E. COSTS 

��(��(�))  The operating costs for generator m producing 

��(�) or ��,�(�). 

���(��(�)) The CO2 equivalent emission costs for 

generator m producing ��(�) or ��,�(t). 

 
I. INTRODUCTION 

Renewable energy sources (RES) like wind or solar power 

generation are sensible to meteorological changing, which 

makes it unrealistic to forecast them accurately. Because of 

their pollution free characteristic and decreased costs, small-

scale RES generators are more and more used for residential 

applications. They increase local profits in energy self-

production and self-consumption for citizens, limit 

greenhouse emissions and differs infrastructure investments 

in transmission & distribution capacities [1]. Classically, 

with forecasting data of load demand and renewable 

generation, determinist unit commitment methods find the 

optimal scheduling of all controllable generators to balance 

the electrical system while minimizing the operating cost at 

each time step of the next day [2]. However, uncertainties in 

generation and consumption forecasting induce unavoidable 

deviations between scheduled and optimal generation 

decisions. 

In isolated micro grids and balancing areas, the large-scale 

development of small-sized variable RES increases local 

dynamic power imbalances between power generation and 

consumption [3]. Primary frequency controllers of existing 

conventional generators are strongly solicited to provide 

operating reserve (OR) in order to compensate unexpected 

power imbalances [4] [5]. Therefore, sizing and providing 

OR requirement is essential to ensure the power system 

security [6]. OR must be well quantified to avoid extra 

operational costs due to unnecessary scheduled 

commitments of generators. Moreover, an optimal reserve 

allocation among available controllable generators is 

required by considering a trade-off between their dynamic 

response and operational cost. 

In order to ensure the security of the electrical system, a 

risk level is usually prescribed before the operation decision 

of the electrical system. Based on a probabilistic analysis of 

forecasting errors, additional reserve power is determined 

and implemented in a deterministic unit commitment (DUC) 

as an additional and potential power that could be used 

during the operation [7]. For example, in [8] the reserve is 

optimized by a constrained unit commitment optimization 

with a loss of load probability index. A probabilistic method 

for quantifying the required OR by using forecast errors 

quantiles of wind production has been presented in [9].  

A stochastic unit commitment (SUC) uses a representation 

of the uncertain forecasting by various possible scenarios in 

the UC formulation and, so, include uncertainties in the 

solution search [10]–[13]. The uncertainty behavior of 

variables and their interactions that may potentially change 
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the state of the system are represented. This modelling 

enables the determination of possible system’s states and 

consequences when constraints are not satisfied. 

Fundamental concepts of SUC, including different problem 

formulations and the most common decomposition 

techniques applied to solve the problem can be found in [14]. 

In contrast with scenario-based stochastic programming 

models, robust unit commitment (RUC) methods try to 

incorporate uncertainty without the information of 

underlying probability distributions, and instead with only 

the range of the uncertainty. In place of minimizing the total 

expected cost as in SUC, RUC minimizes the worst-case cost 

regarding all possible outcomes of the un-certain parameters. 

Certainly, this type of models produces very conservative 

solutions, but computationally it can avoid incorporating a 

large number of scenarios. In [15], a robust interval 

uncertainty method and a scenario-based method are detailed 

and compared. The results conclude that the performance of 

interval-based approach is greatly dependent on interval 

choices, while the computational cost is low. Compared to 

interval-based robust optimization, the scenario-based 

method leads to solutions with higher accuracy, but with 

higher computational complexity. A great challenge of 

scenario-based SUC is the speed up of the problem solving. 

To tackle this problem, we propose the determination of a 

limited number of scenario and the refined exploitation of 

fast generators to counter pass probable uncertainties. 

In chance-constrained unit commitment (CCUC), certain 

constraints are only satisfied under a preset probability in 

[16]. To avoid the overestimated costs caused by extreme 

worst-case that are unlikely to happen, a trade-off is 

performed between cost and robustness by means of setting 

a probability of the selected solution to be feasible. Despite 

the computational difficulty, a joint CCUC is considered in 

UC with a joint probabilistic constraint for the RES 

uncertainty in [17]. However, a drawback of CCUC is that 

probabilistic constraints can be nonconvex and hard to 

evaluate, thus making these approaches potentially 

computationally demanding. By comparison with RUC and 

CCUC, it is clear that SUC adds an acceptable extra 

computational complexity in solving methods while 

preserving accuracy of results. 

However, the quantification and pre-allocation of the 

reserve power one day-ahead in a SUC is still a problem 

since efficiency and reliability when solving such a problem 

is greatly dependent on the number of scenarios. To 

overcome these disadvantages, [18] merges a probabilistic 

reserve constraint technique and a SUC approach with a 

limited number of scenarios to overcome the problem of 

computational cost. In [19], by considering different 

distribution functions, load forecast uncertainty and wind 

power forecast uncertainty are represented, then two 

objectives regarding minimal cost and minimal emission are 

considered for market clearing of electrical energy as well as 

spinning reserves. A trade-off between emission and cost 

objectives is proposed in [20] to find the solution of an optimal 

power flow problem under RES uncertainty in a wind-thermal 

power system. In [21], to find the economic dispatch 

solution, the optimal spinning reserve requirements are 

calculated under consideration of wind uncertainty in a 

wind-thermal power system. By considering the additional 

stochasticity from RES, [22] proposes a conditional value of 

risks during the SUC procedure to deal with RES 

uncertainties but without distinguishing the dynamic 

response of generators.  

The interest of conventional generators with fast dynamic 

response (called “fast generators”) is that they can be used to 

erase non-expected electrical system unbalancing. Problems 

arise because the operational cost increases as well as 

emissions since they are higher during transients. Hence, a 

general energy management strategy is to plan conventional 

generators with slow dynamic response (called “slow 

generators”) such that they could be used for a certain range 

of (possible) uncertainties and keep fast generators for less 

probable unbalancing. This paper proposes a framework for 

a separated commitment of slow and fast generators for 

economical and emissions minimization, according to the 

uncertainty modelling and considering the use of PV power 

curtailment (as PV generators have fast response time). 

Thus, a novelty in this study is:  

Following the quantification of the required reserve at each 

time step under RES uncertainty, the reserve provision is 

optimized by checking the availability of PV generators (for 

possible power curtailment) and fast conventional 

generators, and searching for the optimal solution for reserve 

provision to minimize the costs and emissions. 

Previously, a two-stage organization of a unit commitment 

process has been formulated with wind uncertainty by 

considering various locations of wind generators and 

transmission line failures and so for transmission 

applications [23]. A two-stage stochastic programming 

method is implemented in [24] for power generation 

scheduling to deal with unpredictable wind power and load 

demand. In [25], under wind uncertainty, a two-stage 

stochastic programming problem is discussed for optimizing 

both energy and OR one day ahead. In the studies all above, 

once the commitment decisions of slow generators are made 

in the first stage, they are unalterable in the second stage. 

Whereas for each fast generator, the commitment and the set 

point are adjustable in the second stage. However, the 

common feature of these approaches and methods is that 

curtailments of PV generators are not considered in OR 

provision while this process is inducing cost and emissions 

reduction for some operating range of the considered 

electrical system. In addition, they cannot be adapted for 

urban networks or microgrids, because transmission 

constraints complicate the building of scenarios. 

Furthermore, specificities of small power systems are not 

taken into account (as for example, fast dynamic variations 

since electrical systems with many power electronic-
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connected generators has a low inertia). In our study, a co-

optimization framework will be presented for a local energy 

community with PV generation and Combined Heat and 

Power (CHP) generation comprising slow/fast generators 

that can be used for electrical energy compensation and 

emergency generation. Moreover, PV generators are 

considered as fast generators and can be regarded as an OR 

source under a security-constrained manner.  

The literature review shows that probabilistic-based DUC 

and scenario-based SUC have certain advantages regarding 

reserve allocation onto controllable generators. They should 

be properly adapted and combined. The uncertainty handling 

by a proper reserve scheduling is a challenging and urgent 

task in UC problem. However, very few publications in the 

literature take into account the availability of RES, e.g. PV 

generators, for optimal reserve provision under uncertainty.  

In this study, a stochastic optimization framework for day-

ahead unit commitment is proposed to take into account the 

PV production uncertainty. The proposed operational 

planning scheme is organized in two stages, but with 

different tasks regarding the uncertainty handling. The first 

stage calculates ad hoc requirements on reserve supply from 

a probabilistic-based uncertainty analysis on past forecasting 

PV errors, and then, performs an optimal DUC with a Mixed-

Integer Programming (MIP) method. The second stage is a 

stochastic operational planning. With an uncertainty 

prediction by considering various future scenarios and their 

corresponding probabilities, a SUC is formulated and 

applied to bring enough flexibility through the decided 

power scheduling of fast generators (including PV active 

generators) in case of possible deviations from forecasting 

values.  

The contributions of this paper are:  

1) A risk constraint-based method is detailed to determine 

the OR after a probabilistic analysis of past forecasting 

errors;  

2) In a first stage, forecasted data and the required OR are 

considered and a DUC method is applied to optimize the 

generation planning one day-ahead; 

3) In a second stage, occurrences of probable uncertainties 

are considered and the strategy is to use flexible generators 

to compensate them. Therefore, the commitment of slow 

generators is not changed. By considering probable PV 

production scenarios, a SUC method optimally recalculates 

the dispatching of the power reserve and the optimal 

generation planning of fast generators in order to adapt the 

OR capacity;  

4) Mono-objective and multi-objective optimization are 

compared by considering operating economic costs and/or 

the CO2 equivalent emission environmental costs.  

The paper is organized as follows: Section 2 explains the 

reserve determination, which is based on a risk assessment 

method; Section 3 describes the mathematical formulation of 

the Unit Commitment. Section 4 details the scheme of the 

two-stage optimization algorithm for the deterministic and 

stochastic operational planning. Section 5 presents the 

obtained results in a local energy community with distributed 

energy resource, as well as the impact analysis of the 

uncertainty propagation on the cost, risk criteria and the self-

production rate of electricity from RES. Perspectives and 

conclusions are given in section 6. 

II.  RISK CONSTRAINED PROBABILISTIC METHOD FOR 
RESERVE DETERMINATION 

In recent decades, many techniques for forecasting have 

been developed and they all own two characteristics. 

Forecasting is a stochastic problem by nature and produces 

outputs in a probabilistic form, such as a probability density 

function, a prediction interval, some quantile of interest, a 

forecast under a scenario, etc. Current energy management 

systems cannot yet take probabilistic inputs, so the most 

commonly used forecasting output form is still the future 

expected value of a random variable. Moreover, forecast 

errors are inevitable due to the stochastic nature of forecasting. 

The motivation of our research work is not to focus on an 

improvement of forecasting techniques. It is first to analyze 

forecast error uncertainty regardless of applied forecasting 

technique and then to propose a method for planning 

generators in order to be able to balance possible errors.  

To get forecasting errors, a homemade Back-propagation 

neural networks (BPNN) is used to generate PV power and 

load forecast data with their confidence intervals (CI) or 

prediction intervals (fig. 1 and fig. 2) [26]; but other 

forecasting techniques [27] could also be employed.  

 
(a) On 29th August, 2020 (non-workday) 
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(b) On 31st August, 2020 (workday) 

FIGURE 1.  Load demand forecast results and forecast errors in a non-
workday and a workday in Lille, France. 

 

 
(a) On 24th September, 2020 (clear sky) 

 

(b) On 23rd September, 2020 (cloudy sky) 

FIGURE 2.  PV power forecast results and forecast errors in a clear sky 
day and a cloudy day in Lille, France. 

 

Forecast error uncertainty analysis is based on obtained 

forecasting errors. Operating reserve power is essential to 

ensure the power balance between intermittent RES 

generation and load demand in case of mismatch. To achieve 

an optimal generation planning with the consideration of 

reserve allocation, reserve requirements for all the electrical 

system must be quantified in advance. As uncertainties in 

energy forecasting vary in the day, an appropriate level of 

minimum power reserve must be determined for each 

considered time step. To set a desired level of system security, 

a risk index must be prescribed. Then the OR power is 

quantified in advance (one day-ahead) by carrying out a risk-

constrained probabilistic method. According to the forecasted 

renewable energy generation uncertainty and load uncertainty 

at each time step, the probabilistic reliability is assessed by an 

index as the Loss of Load Probability (LOLP). LOLP is the 

probability that a power shortage may occur. It is a measure of 

the expectation that the load demand may exceed generating 

capacity of an electrical system during a given time step.  

The positive net demand deviation represents the power 

losses, which may be caused by an unexpected increase in 

demand or an overestimation of PV generation capacity (Fig. 

3).  

 
FIGURE 3.  Distribution of the net demand deviations ∆D(t) with a risk 
index ε at the time step t. 

 

An acceptable risk (ε) corresponds then to the area in red 

and the reserve power (r(t)) to cover this risk appears in green 

on the characteristic. The risk is assessed when the required 

reserve is enough to cover the net demand deviation ∆D(t): 

 
� = ℙ*� (�) ≤ ∆�(�)- = 1 − / ��0(1)

2 (3)

45
�1

= 1 − 67�(�)89(�), :(�);  ∀� ∈ $ 

(1) 

pdf(x) is an approximated continuous function, representing 

the probability density function of the net demand error. As 

example, in [28], a Gaussian function is considered for pdf(x) 

and corresponding detailed calculations are given. 6(� (�)) is 

the cumulative distribution function at time step t, considering 

a reserve requirement � (�)).  

In order to assess the electrical system security level, the 

system operator can set a prescribed risk index; hence, the 

required reserve is obtained by the inverse cumulative 

distribution function (Fig. 4):  
� (�) = 64=(1 − �) . In this way, �(�)  is the reserve 

requirement when >?>�(�) ≤ � is satisfied. i.e. �(�) is used 

to cover the loss of load and makes >?>�(�) be equal or less 

than the given risk index. 



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

 

 

)1(..., ),( −− tLTtD  

)1(..., ),( −− tPVTtPV AA

 

Day-1 

Day 

)1(..., ),( −− tDTtD AA

 
)1(..., ),( −− tPVTtPV  

Sensed 

Load Database 

Day-1 
Day 

Sensed 

PV Database 

Day-1 
Day 

Forecasted 
PV Database 

Forecasted 
Load Database 

Fixed Risk Index 

ε 

Net Demand Uncertainty Analysis  
 

f(x) and cumulative distribution 

function ( equ (1) ) 

 

Operating reserve quantification 
 

∆Dt 

rt 

normal inverse cumulative distribution : φ−1( t, (1-ε) ) 
)) 

φ(rt) 

 
FIGURE 4.  Scheme of the risk-constrained probabilistic method for 
reserve determination  

 

For the ease of illustrations, consider normal distributions 

as Probability Density Function (pdf) approximations because 

they are simple to implement and well known to be used for 

easy fast testing: 

 ��0(1) = / 1
:(�)√2� �4=

BCD4E(3)
F(3) G

H2 (3)

45
 

From the historic database of PV and load demand 

forecasting errors, the mean value (9(�) ) and the standard 

deviation (:(�)) of the forecasted net demand errors are easily 

obtained at each time step and can be used to develop the 

normal pdf approximation. By calculating the reserve 

requirement under a risk level (� ), the LOLP curve can be 

obtained at each time step during the day. Meanwhile, the 

required power reserve varies under different risk level, e.g. if 

the risk level varies from 1% to 10% of LOLP, the required 

reserve will decrease gradually. Fig. 5 shows the obtained 

characteristic of the risk according to the power reserve at 

11:00 time step. A ε=5% risk (LOLP index) requires a 21.5 

kW reserve to obtain the wished security level. 

 
FIGURE 5.  Risk characteristic regarding reserve at 11:00 in Villeneuve 
d’Ascq (Lille, France) the 23th of June, 2020. 

III. GENERAL SCHEME AND FORMULATION OF THE 
UNIT COMMITMENT 

A. TASK 

The required OR (r(t)) as well as the missed energy from 

passive renewables (net demand D(t)) must be provided by 

controllable generation units (Fig. 6).  

  
FIGURE 6.  General scheme of inputs for the unit commitment. 

 

Among a set of M controllable generation units, the unit 

commitment (UC) problem is a mathematical optimization 

that must decide whether a controllable generation unit is used 

to produce energy and how much power (pm) each unit is 

producing at any time step to match the demand and the 

required reserve power while minimizing an objective 

function.  

B.  INTEGRATION OF UNCERTAINTIES IN THE 
OPTIMIZATION PROCESS 

The main difficulty lies in the need of making decisions 

about the unit commitment before knowing how and when 

uncertainties will affect the electrical system balancing. The 

most used strategy is to consider two stages, thereby to solve 

this optimization problem and find optimal solution in 

expectation of uncertainty [29],[30] (Fig. 7). 

The first stage is executed before the uncertain event 

realization and is based on the modelling of past forecasting 

errors with pdf to calculate the power reserve. The optimal 

dispatch and power scheduling of generation is determined 

with the expected consumption forecast, generation forecast 

and the required power reserve.  

The second stage is based on a number of reasonable 

operating conditions that may arise in the future and so 

consider a probable uncertainty realization. Here, the 

uncertain PV production forecasting errors is represented in 

scenarios (rather than their distributions in the first stage). 

After the occurrence of forecasting uncertainties in each 

scenario ω, a second optimal dispatch is computed. The future 

uncertainties are taken into account with possible scenarios 

and the commitment of fast generators and the power 

scheduling of all generators are decided. The second stage is 

used to plan fast generators as flexible generators to erase 

future uncertainties. Hence at the end of second stage, fast 

generators are able to provide fast reserve and erase the future 

uncertainties, which are modeled by scenarios with 

corresponding probabilities. 
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FIGURE 7.  Sequence of the two-stage stochastic programming for the 
reserve and energy optimization function. 

C.  CONSTRAINTS 

1)  POWER BALANCING AND RESERVE PROVISION 

The balance between generation and consumption is 

expressed as a first equality constraint. The total amount of 

conventional generation at time step t must meet the net 

demand forecast and the required reserve for all time steps:  

 I ��,�(�) 
J

�K=
= ��(�) + � �(�), ∀� ∈ $, ∀
 ∈ % (1) 

The index ω indicates the considered scenario, as ω=0 is the 

forecasted scenario. For large power systems, losses in the 

distribution network must be added in the power balancing 

equation. The power reserve has a cost even when it is not 

used. Especially in small power systems, the cost of reserve is 

high. Hence it is important to have OR optimal dispatching 

techniques taking into consideration all conventional unit 

constraints. 

 

2)  GENERATOR LIMITS 

The commitment orders of controllable generation units are 

modelled as binary decision variables (δm). The power 

generation limits between the minimum power (pm) and rated 

power (��) of each generator m is expressed as: 

�� ��,�(�) ≤ ��,�(�) ≤ ����,�(�)， 

∀M ∈ ℳ，∀� ∈ $, ∀
 ∈ % 
(2) 

Here ��,�(�) ,  ��,�(�)  and ��,�(�) are all scenario-

dependent variables. 

IV. TWO-STAGE OPTIMIZATION ALGORITHM 

A. FIRST STAGE: DETERMINISTIC OPERATIONAL 
PLANNING WITH A MILP OPTIMIZATION 

The operating costs and the CO2 equivalent emission costs 

of each Micro Gas Turbine (MGT) m are modelled as linear 

functions ��(��)  and ���(��)  respectively in order to 

describe objective functions [31]. Operating costs (in euros per 

kWh) are dependent on consumed gas and operating points of 

MGTs. CO2 equivalent emission costs are estimated regarding 

the greenhouse gas emissions (CO2, CO and NOx). The 

emissions of CO and NOx are converted to CO2 equivalent 

emissions according to [32]: 1g of NOx is considered 

equivalent to 298g of CO2; 1g of CO equivalent to 3g of CO2. 

��� ��(�) and ��� ��(�) are the start-up and shutdown penalty 

on the operating costs, ���� ��(�) and ���� ��(�) are the start-

up and shutdown penalty on the CO2 equivalent emission 

costs. The start-up penalty is assumed equal to the operating 

costs / emission costs during a 5 minutes full load operation. 

The shut-down penalty is assumed equal to the costs of a full 

load operation during 2.5 minutes. 

The economic cost-based mono-objective function for the 

operational planning in the first-stage is formulated as: 

 
N= = minR,S,T I I {��(�)��(��(�)) + ��(�)���

J

�K=

#

3K= + ��(�)��� } 
(3) 

subject to (1),(2) (&, �, �)ϵ ℱ 
 

ℱ  is the set of feasible solutions, i.e. set of feasible 

scheduling decision variables of commitment ��(�) , and 

power generation ��(�)  for MGT m at time step t. The 

notation ω=0 for the unique considered scenario is omitted for 

the ease of equation writing. Similarly, the emission-based 

mono-objective function for the operational planning in the 

first-stage is formulated by considering the CO2 equivalent 

emission cost: 

N= = minR,S,T I I {��(�)���(��(�)) + ��(�)����
J

�K=

#

3K= + ��(�)���� } 
(4) 

The cost and emission-based multi-objective function is 

formulated as the sum of the two above functions: 

 
N= = minR,S,T I I {��(�)V��(��(�)) + ���(��(�))W

J

�K=

#

3K= + ��(�)V��� + ���� W
+ ��(�)V��� + ���� W} 

(5) 

B. BUILDING OF NET DEMAND SCENARIOS FOR THE 
REPRESENTATION OF FUTURE UNCERTAINTIES 

The challenge of building scenarios for the SUC problem is 

to generate several representative operating points that will 

properly guide the SUC optimization of the second stage. 

Interest of the second optimization is to consider in advance a 

realizable unit commitment scheduling of fast generators and 

a power rescheduling of all generators in case of unexpected 

uncertainties at least cost. The set of scenarios % must take 

into account all the possible net demand events over the 

generation scheduling period (the following 24h) with the 

consideration of different PV generation scenarios.  

Scenarios with different PV generation predictions are built 

according to probabilistic characteristics of forecasting errors. 

Based on the given large data set, the probability distribution 

of the PV forecast error at each time step t is approximated as 

a distribution function [33]. For a fixed standard deviation 
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(SD), an occurrence probability can be calculated [34] and so 

a corresponding future scenario can be considered.  

As example, the set of available past PV forecast errors on 

23th June at 11:00 has as mean value and standard deviation  

9XY,3K==:[[ = 0.03 and :XY,3K==:[[ = 0.2, respectively. 

 

 
FIGURE 8.  (a) Frequency distribution histogram of the PV forecast 
errors at 11:00 (b) Normal distribution approximation. 

 

If the probability of errors is approximated by a normal 

distribution, then this simplified model can be exploited to 

consider and build possible future scenarios. As shown in Fig. 

9, 68.2% of samples fall within an interval of ±1 SD from the 

mean, while 95.4% of samples are within an interval of ± 2 

SD, and 99.7% of samples are within ±3 SD from the mean. 

 
FIGURE 9.  Scenario generation based on pdf of PV forecast error at 
time step t. 

 

By considering three standard deviations around the mean, 

six scenarios can then be built with the PV forecasting time 

series (�à (�)). The occurrence probability of each scenario is 

deduced from the area of corresponding portion under the pdf 

curve. For example, the probability of scenario 3 (s3) is 34.1% 

regarding the area under pdf curve in the interval and so is 

obtained following: 

 
b3: �`ca (�) = �à (�) + ∆�`c(�)

= �à (�) + 9de,f(�) − 1
2 :de,f(�) (6)

By doing so, for each scenario, the expected net demand 

��(�)  is calculated, and the operating cost is, hence, obtained 

by considering different deviations [35],[36]. These deviations 

are considered as constant all the day in order to estimate 

margins after propagation in the UC optimization algorithm. 

Hence, the dispatching adjusts the previous scheduled power 

in the first stage, according to the varying reserve requirement 

of each scenario in the second stage. 

It must be pointed that other types of distributions for the 

approximation can be also considered as the aim is to generate 

future scenarios with their probabilities for consideration in 

the second optimization stage. 

C.  SECOND STAGE: STOCHASTIC OPERATIONAL 
PLANNING 

1)  RESERVE QUANTIFICATION FOR EACH SCENARIO 

The considered uncertainty in each possible scenario is 

different. So, the operating reserve requirements for each 

considered scenario � �(�) must be re-calculated. Hence, we 

implement an adjustment of previous scheduled power (in the 

first stage), according to the varying reserve requirement in 

each scenario. The reserve requirement for PV generation ( 

∆�`�(�)  ) is the difference between the predicted PV 

generation value, one day ahead, and the PV generation value 

in the current scenario. ∆�`�(�) is equal to one value among 

six possibilities: g9de,f(�) ± 0.5:de,f(�), 9de,f(�) ±
1.5:de,f(�), 9de,f(�) ± 2.5:de,f(�)j . The average value 

regarding the upper and lower bound of PV generation is 

considered as the PV generation under scenario 
. Hence, the 

required reserve power � �(�) is deduced: 

� �(�) = ∆�`�(�) + 64= k1 − �l9de,f(�), :de,f(�)m (7) 

2)  STOCHASTIC OPTIMIZATION 

The optimization process must minimize the cost of the 

deterministic operational planning decisions of the first-stage 

(including the cost of the scheduled reserves) added with the 

expected cost of the second-stage decisions (including reserve 

provision called upon regarding each possible scenario). The 

trade-off that needs to be considered in the reserve dispatching 

is the flexibility of fast units versus their higher operating costs 

(due to their higher marginal fuel costs). 

In this study case, fast generators can change commitment 

within one time step and have similar start up and turnoff costs 

to those of slow units. The unit commitment of slow 

generators ∀M ∈ ℳ���  in the first stage is kept in the 

second stage but their references may change. Only fast 

generators are committed in the second stage optimization 

(∀M ∈ ℳ!"�# , Fig. 10). 

��,�(�) = ��(�), ∀M ∈ ℳ��� , ∀� ∈ $, ∀
 ∈ % (9)
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FIGURE 10.  Re-scheduling of fast generators in the second 
optimization stage. 
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The purpose of the optimization function is to minimize the 

total costs of first and second stages, considering the recourse 

cost of the second-stage with a weighted probability. So, the 

cost-based mono-objective function of the operational 

planning in the second-stage is formulated to take into account 

the occurrence probability (��) of each scenario ω: 

NB = minn,d,2 I ��
o

�K=
I I g��,�(�)��7��,�(�);

J

�K=

#

3K=+ ��,�(�)��� + ��,�(�)��� j 
(10)

where ∑ ��o�K= = 1 . ℱ  is the set of scheduling decision 

variables ��,�(�) and ��,�(�). 

Thus, this expected cost is directly affected by the 

uncertainty of the PV forecasting, which is modelled through 

scenarios and their probabilities.  

Similarly, an emission-based mono-objective function for 

the operational planning in the second-stage is formulated by 

considering the CO2 equivalent emission cost: 

 
NB = minn,d,2 I ��

o

�K=
I I g��,�(�)���7��,�(�);

J

�K=

#

3K=+ ��,�(�)���� + ��,�(�)���� j 

(8) 

The cost & emission-based multi-objective function is 

formulated as the sum of the two above functions over the 

whole set of scenarios: 

NB = minn,d,2 I ��
o

�K=
I I g��,�(�)*��7��,�(�);

J

�K=

#

3K=+ ���7��,�(�);-
+ ��,�(�)V��� + ���� W
+ ��,�(�)V��� + ���� Wj 

(12) 

Mixed-Integer Linear Programming (MILP) is implemented 

for operation planning, and is solved by branch-and-cut 

algorithms, i.e. branch-and-bound algorithm combined with 

cutting planes [37]. 

V. APPLICATION FOR THE OPERATIONAL PLANNING 
OF AN URBAN ENERGY SYSTEM 

A. PRESENTATION OF THE STUDIED ELECTRICAL 
SYSTEM 

The studied local energy community includes 120kW 

residential rated loads, a set of 20 passive PV generators with 

180kW rated power, and three CHP-based MGTs (M=3): 

60kW (MGT 1) and two of 30 kW (MGT 2 ad MGT 3). All 

generators and electrical loads are connected locally in a 

residential district, thus voltage drops as well as line losses are 

ignored. Since PV generators are closely located in the current 

urban network, the received solar irradiation is assumed to be 

the same. CHP have constraints in response times and 

minimum electrical power generation, regarding heat power 

generation, because heat is in the form of hot water. In this 

study, with the largest rated power and more heat to consume, 

MGT 1 is a slow-start generator and its commitment cannot be 

rescheduled in the second stage. MGT 2 and MGT 3 are 

flexible generators (fast-start generators with a short time 

response) and their power reference can be rescheduled during 

the second stage.  

The wish is to increase the self-consumption of the local 

generated electricity while decreasing power exchanges with 

the bulk power system. In this purpose, the presented 

methodology is implemented to make operate the local energy 

community autonomously. The profiles of the half-hourly 

electricity consumption forecast, and half-hourly forecasted 

daily PV generation for the corresponding day are given in 

Fig. 11. Under this situation, the forecasted daily PV energy is 

539 kWh; the forecasted daily load demand energy is 1082 

kWh. The operating cost functions of MGTs ��(��(�)) and 

CO2 equivalent emission cost functions are approximated as 

linear functions in their operating range. 

The optimization application is using YALMIP [38] and 

IBM ILOG CPLEX Optimization Solver [39] with Matlab 

R2018b. The used computer has 8 GB of installed RAM and 

a 2.70 GHz processor. 

 
FIGURE 11.  Load demand forecast and PV generation forecast. 

B. RESULTS WITH A DETERMINISTIC OPTIMIZATION 

1)  QUANTIFICATION OF THE OR WITH THE N-1 
CRITERION 

Traditionally, OR is scheduled by deterministic methods as 

a percentage of the load demand or generation, or by the N-1 

criterion as the capacity of the largest power generation unit. 

Under N-1 criterion, in case of tripping of the largest 

generation unit, the scheduled OR must be capable of restoring 

the power. In this study, with the integration of a high 

penetration of RES, if PV generation is regarded as the 

tripping generation unit, the power reserve is then calculated 

according to the largest loss of PV production. The N-1 

criterion is implemented as following: 

1) The UC and generation scheduling are calculated by 

considering only the load demand (no PV generation as the 

previous case). 

2) According to the PV production forecast, the power set 

point of MGTs is reduced to satisfy the power balancing 

constraint. 

3) If one (or many) MGT power reference is under their 

minimum power, the MGT power reference is increased and 

forced to be equal to their minimum power. In consequence, 
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the PV production is reduced to satisfy the power balancing 

constraint and a part of PV generation is lost. 

With this criterion, all MGTs are committed by considering 

no PV generation, their power set points are reduced (to the 

minimum value if necessary) and so they are always able to 

produce the power for the load demand in case of the loss of 

the entire PV power. Fig. 12 shows the generation planning 

results following the N-1 criterion and the corresponding 

operating cost at each time step. 

 
(a) Generation planning 

 

(b) Operating cost 

FIGURE 12. Generation planning and operating cost under N-1 criterion. 

 

A large part of the PV power is lost when PV panels are 

operating under the Maximum power point (MPP) because: 

- all committed MGTs must remain committed with their 

minimum power reference and 

- the PV power exceeds the load demand during the day (Fig. 

11). 

With this N-1 strategy, the daily PV self-consumption rate 

of PV generation is 17% and the PV self-production is 9%. 

The effective OR is regarded as the difference between the 

total power ratings and the set point of committed generators 

at each time step. When the PV production is reduced, the lost 

PV power can be used as operating reserve because the PV 

production can be increased if necessary (more load demand 

as forecasted, faults on a MGT, …). So, the effective reserve 

is now the addition of the scheduled lost PV power and power 

margin of committed MGTs (Fig. 13 (a)). Such PV generators 

enabling a dispatched power limitation is called PV Active 

Generators (PV AGs). 

Fig. 13 (b) demonstrates that effective (and available) 

reserve under N-1 criterion is over scheduled, compared with 

the required reserve for obtaining a 5% LOLP. The gap 

between the effective daily reserve and the required daily 

reserve is large from 9:30 to 15:00, and indicates an oversized 

reserve quantification. While from 15:30 to 19:00, the 

obtained effective reserve is possibly less than the reserve 

requirement, which implies a possible risk of a power deficit. 

It is the reason why deterministic methods for OR calculation 

are gradually replaced by probabilistic methods with a desired 

security level. 

 
(a) Effective reserve from MGTs and PV AGs under N-1 criterion 

 
 (b) Comparison of effective reserve and reserve requirement 

FIGURE 13. Obtained effective reserve without reserve requirement 
under N-1 criterion. 

 

From these results, we can conclude that it is not rational to 

schedule OR by N-1 criterion, since it is rare to lose all 

predicted PV power. In case of forecasting error, just a part of 

the predicted PV power is usually lost. Moreover, the N-1 

criterion leads to a sub-optimal decision as the PV production 

uncertainty is unknown and not quantified. The obtained 

reserve can be over scheduled during one period, while a 

deficit of reserve may occur during another period. It is the 

reason why determinist methods for OR calculation are 

gradually replaced by probabilistic methods with a desired 

security level.  

 

2)  QUANTIFICATION OF THE OR WITH A RISK 
ASSESSMENT 

When the reserve requirement is quantified by the risk 

assessment, Fig. 14 shows obtained power set points of 

generators. 

 
FIGURE 14. Generation planning under deterministic optimization and 
scheduled PV power. 

 

All MGTs are switched off between 13:00 and 15:00. With 

this LOLP risk strategy, the PV self-consumption rate of PV 

generation is 67% and the PV self-production is 25%. The PV 

production must be limited (operating under the MPP) as it is 

sometimes more than the load. By this way, as the PV 

production can be increased if necessary, the shaded power 

constitutes an OR that is available. Then, the positive effective 

OR is provided both by the PV limitation (rpv(t)) and by the 
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difference between the maximum generation limits of 

committed MGTs and their output power at each time step. 

The available reserve power from the PV limitation is 

integrated in the optimization formulation, the general 

balancing constraint formulation (3-14) is adapted as: 

I ��(�)
J

�K=
= �(�) + �(�) − �qr(�), ∀� ∈ $ (13)

�qr(�) is the reserve power from PV AGs.  

It is observed that the obtained available effective reserve is 

equal or superior to the reserve requirement ( Fig. 15 (a)). The 

pre-set security level is obtained. The required daily reserve is 

426.5 kWh; the effective daily reserve is 762.5 kWh, which 

gives rise to a ratio of required reserve to effective reserve 

56%. Compared with the N-1 criterion, here the reserve 

scheduling is more reasonable with a higher reserve utilization 

rate. Fig. 15 (b) shows reserve power allocation in slow 

generator and fast generators. 

 
 (a) Obtained effective reserve with a LOLP ≤ 5% after the 

deterministic unit commitment 

 
(b) Obtained effective reserve from slow and fast generators after 

the deterministic unit commitment 

FIGURE 15. Reserve requirement and obtained effective reserve with a 
deterministic optimization. 

C. RESULTS WITH THE STOCHASTIC-BASED METHOD 

Based on the probabilistic distributions of the PV generation 

errors at each time step, six additional scenarios with their 

corresponding probabilities are considered for the next day to 

take into account the unexpected variation of PV generation, 

as explained in Section 4.3 (Fig. 17). Different levels of grey 

from dark to light indicate the possibility of occurrence from 

high to low, which imply 40% (dark grey), 80% (middle grey), 

99% (light grey) of probability intervals. The load demand 

forecast is also shown in Fig. 16. 

After the stochastic optimization with the different 

considered PV generation scenarios and the forecasted load 

demand is done, the generation scheduling is obtained (Fig. 

17). The commitment of slow generator MGT 1 is kept 

whereas the planning of generators (MGT 2 and MGT 3) has 

changed (in comparison with the first stage, Fig. 16) in order 

to be able to compensate possible PV production uncertainties 

and according to nonlinear characteristics of generators. 

The required reserve for each scenario is different and is 

calculated according to: 

1) The deterministic load reserve, which is allocated at first-

stage;  

2) The stochastic PV reserve, which is re-scheduled based on 

the expected PV generation under each scenario. For example, 

the reserve requirement in the worst case regarding the net 

demand deviation (scenario 1), and effective reserve after 

stochastic optimization are shown in Fig. 18. Even in the 

worst-case situation (scenario 1), effective reserve is capable 

of covering all reserve requirement at each time step. 

 

 

 
FIGURE 16. Expected PV generation under six probable scenarios and 
forecasted load demand. 

 
FIGURE 17. Generation scheduling under stochastic optimization. 

 

By comparing the reserve under the stochastic optimization 

(Fig. 18 (a)) with the one under the deterministic optimization 

(Fig. 15), the reserve requirement has been more precisely 

calculated and re-scheduled regarding each scenario, as well 

as obtaining the wished high security level. Meanwhile, 

compared with Fig. 15 (c), Fig. 18 (b) illustrates that more 

reserve power is provided thanks to the commitment 

availability of fast generators. Daily reserve energy from slow 

generator is 208 kWh in both deterministic and stochastic unit 
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commitment. As for reserve from fast generators, the daily 

reserve energy has increased to 450 kWh in the scenario-based 

stochastic optimization, compared with 390 kWh of reserve 

energy in the deterministic case, i.e. the daily reserve energy 

from fast generators has increased 15%. 

 
 (a) The reserve requirement for scenario 1 (worst case) and obtained 

effective reserve 

 
(b) Obtained effective reserve from slow and fast generators 

FIGURE 18. Reserve requirement for scenario 1(worst case) and the 
effective reserve under stochastic optimization. 

D. DISCUSSION 

1)  IMPACTS OF THE SCENARIO-BASED UNCERTAINTY 
MODELLING ON THE COST 

The scenario-based optimization is implemented with three 

objective functions respectively: 1) cost-based mono-

objective; 2) CO2 equivalent emission-based mono-objective; 

and 3) multi-objective of cost and emission.  

Here a multi-objective optimization is taken as an example 

to analyze the costs and emissions at each time step under six 

scenario S1-S6, and results are shown in Fig. 19. As illustrated 

in figures, at each time step, costs and emissions may fluctuate 

because of PV generation fluctuations around the forecast 

value. Fig. 19 (a) demonstrates impacts of PV uncertainties 

onto fuel costs and CO2 equivalent emissions by considering 

only the 1st stage optimization. In this way, PV deviation 

∆�`�(�) must be compromised by effective reserve, which is 

considered as an additional cost for scenario ω. Fig. 19 (b) 

shows fuel costs and CO2 equivalent emission after the 2nd 

stage optimization. Costs and emissions are optimized because 

reserve is properly scheduled during the 2nd stage optimization 

regarding uncertainties under each scenario.  

Table I compares fuel costs and CO2 equivalent emissions 

before and after the 2nd stage optimization. The fuel cost and 

CO2 equivalent emission cost vary according to the committed 

MGTs as well as considered PV generation. The fuel cost and 

CO2-equivalent emission cost can be approximated by a 

normal distribution. For example, the pdf of the fuel cost at 

17:00 is shown in Fig. 20 with a mean 9tuv3,3K=w:[[ = 8 and a 

standard deviation :tuv3,3K=w:[[ = 0.1, as well as the pdf of the 

CO2-equivalent emission cost with 9y�zvvzu{,3K=w:[[ =

46, :y�zvvzu{,3K=w:[[ = 0.4. The fitted pdf curved is obtained 

for each time step according to the corresponding histogram. 

 

 

 
(a) Before the 2nd stage optimization 
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(b) After the 2nd stage optimization 

FIGURE 19. Fuel costs and CO2 equivalent emission costs under 6 
scenarios at each time step. 

 

 
FIGURE 20. Probabilistic modelling of fuel cost and CO2-equivalent 
emission cost at 17:00. 

TABLE I 

Fuel costs and CO2 equivalent emission costs results 

  S1 S2 S3 S4 S5 S6 

Before Cost ($) 272 251 230 209 189 168 

Emission (ton) 1.14 1.11 1.09 1.06 1.03 1.01 

After Cost ($) 188 173 166 158 153 147 

Emission (kg) 1058 962 923 878 868 859 

 

2) IMPACTS OF THE CHOSEN RISK CRITERIA 

Criteria for the system security induce different costs. 

Meanwhile, when the LOLP assessment is considered in the 

reserve determination during operational planning, different 

outcomes are obtained under deterministic and scenario-based 

stochastic optimization algorithm. Table 2 shows the day-

ahead operational planning results under different risk 

criterions. After the application of scenario-based stochastic 

multi-objective optimization, expected optimal operating cost 

/ emission cost with LOLP in 1st Stage and 2nd Stage are 

reduced by up to around 15%, compared to the N-1 criterion 

deterministic case. The total energy of the day-ahead reserve 

requirement and effective reserve are also compared. 

 

3) IMPACTS OF THE RES SELF-PRODUCTION RATE 

To study the impact of the RES penetration on operating cost 

and CO2-equivalent emission cost, different RES self-

production rates are considered. RES self-production rate is 

defined as the share of PV electricity over the total local 

electricity demand. The higher the PV self-production rate is, 

the more independent the power system is. Fig. 21 shows the 

cost and emissions under different PV self-production rates 

under multi-objective criterion. In the studied case, the 

maximum PV self-production rate is 28%. With the increase 

of PV self-production rate, the difference between costs of the 

deterministic N-1 criterion and costs of the LOLP criterion 

(based on 1st stage and 2nd stage optimization) gradually 

increases. Similarly, CO2-equivalent emissions have tendency 

to decrease under LOLP criterion, compared with the N-1 

criterion. As the self-production rate grows, comparing to 2nd 

stage emission, the 1st stage is more environmental-friendly. 

The operating costs are similar with a slightly difference. As 

for the risk level, 2nd stage planning results provide a higher 

level of power security because more effective reserve power 

is available in case of power losses. As shown in Table 3, more 

effective reserve (available reserve) is obtained under 2nd stage 

than in 1st stage. 

Overall, with the presented scenario-based optimization 

approach, the 2nd stage optimization shows its advantages of 

more flexible operation planning regarding the reserve 

provision, giving rise to a higher security level. 
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TABLE II 

Comparison of day-ahead operational planning results under different criterions 

 

2) IMPACTS OF THE RES SELF-PRODUCTION RATE 

To study the impact of the RES penetration on operating cost 

and CO2-equivalent emission cost, different RES self-

production rates are considered. RES self-production rate is 

defined as the share of PV electricity over the total local 

electricity demand. The higher the PV self-production rate is, 

the more independent the power system is. Fig. 21 shows the 

cost and emissions under different PV self-production rates 

under multi-objective criterion. In the studied case, the 

maximum PV self-production rate is 28%. With the increase 

of PV self-production rate, the difference between costs of the 

deterministic N-1 criterion and costs of the LOLP criterion 

(based on 1st stage and 2nd stage optimization) gradually 

increases. Similarly, CO2-equivalent emissions have tendency 

to decrease under LOLP criterion, compared with the N-1 

criterion.  

 

 
FIGURE 21. Cost curves and emission curves regarding RES self-
production rate. 

 

As the self-production rate grows, comparing to 2nd stage 

emission, the 1st stage is more environmental-friendly. The 

operating costs are similar with a slightly difference. As for 

the risk level, 2nd stage planning results provide a higher level 

of power security because more effective reserve power is 

available in case of power losses. As shown in Table 2, more 

effective reserve (available reserve) is obtained under 2nd stage 

than in 1st stage. 

Overall, with the presented scenario-based optimization 

approach, the 2nd stage optimization shows its advantages of 

more flexible operation planning regarding the reserve 

provision, giving rise to a higher security level. 

V. CONCLUSION 

This work presents an optimization framework to address 

the problem of the optimal operational scheduling of micro 

grids. A two-stage optimization algorithm of generation 

scheduling is presented for an urban microgrid with optimal 

reserve dispatching. The proposed method deals with the 

uncertainty in forecast errors with the optimal operational 

planning of controllable generators, so that the minimum cost 

of the operation or/and CO2 emissions one day ahead can be 

achieved. 

In a first stage, the required half-hourly OR is decided with 

a prescribed LOLP-based risk level, applied on the pdf of the 

past net demand forecast errors. Then, a deterministic unit 

commitment gives the generation scheduling and includes PV 

and load forecasting in addition to OR that are calculated from 

past uncertainties realizations. Secondly, a stochastic day-

ahead operational planning is implemented. The PV 

uncertainty is then considered according to different scenarios 

and their probabilities of occurrence at each half-hour. For 

each scenario, OR can be recalculated by considering the same 

level of security. Based on the presented PV scenario and by 

maintaining the commitment of slow generators, a stochastic 

operational planning considers possible commitment of 

additional fast generators if necessary and adapts power set-
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points of all generators to take into account future 

uncertainties. 

Results are presented according to three different objective 

functions: 1) economic operating cost-based mono-objective; 

2) CO2 equivalent emission-based mono-objective; and 3) 

multi-objective of cost and emission. Three cases regarding 

reserve scheduling are compared: N-1 criterion, optimization 

with probabilistic analysis (1st stage) and optimization with 

scenarios regarding probabilities of occurrence (2nd stage). 

Both economic operating costs environmental costs are saved 

while ensuring the targeted security level. Moreover, as 

shown, this framework enables the analysis of the impact of 

RES penetration ratio on costs and emissions.  

Further works will be oriented to the integration of storage 

systems as an alternative for fast power reserve provision in 

replacement of fast generators and for CO2 abatement. 
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