INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES TRANSPORTS, DE L'AMENAGEMENT ET DES RESEAUX

Summer school HIL 2016 September 1&2, 2016

From simulation to real time control of an all electric bus : the ElLiSup project

B. Jeanneret, R. Trigui, D. NdiayeIFSTTAR – Site de BronLaboratoire Transports et Environnement

Outline

- Brief presentation of the project
- Software In the Loop (Plant and Controller are both simulated)
- Processor In the Loop (Plant simulated/Controller on final processor) – Hardware In the Loop (Plant is part of real component/Controller on proc.)
- Rapid Control Prototyping (Plant is vehicle/Controller on proc.)

EILiSup project

A project supported by ADEME with the following partners:

ADEME

Agence de l'Environnement et de la Maltrise de l'Energie

Project objectives

Purpose : Electromobility for public transport.

- Series hybrid bus 12m long 3 km ZEV
- All electric bus with a dual energy storage system composed of batteries and supercapacitors 12m long – 8 km ZEV

Fast charging system with catenary at the end of the line (up to 250 kW)

IFSTTAR contributions:

- Battery caracterization & selection due to this specific usage
- Modeling and energy management development of the dual system (batteries & supercapacitors)
- Realization of the prototype supervisor

The vehicle

- A bus with 4 axles : 3 steering axles, 2 driven axles
- Small wheels : 17 inches (small diameter for increased interior space)
- 4 electric motors of 50 kW each located in the wheel
- 4 batteries packs of 80 kW each
- 1 supercapacitor pack of 80 kW
- DC/AC convertors (380V et 24 V) for vehicle's auxiliairies (power steering, air compressor, fans...)
- A fast charging system with catenary

Electrical Architecture

Onduleur

Main development steps for the supervisor

Step 1: Model in the loop (MIL)

- Objective : energy sharing between battery and supercapacitor
- Backward models (from the wheels to the energy sources) are used to find optimal solutions regarding objective functions
 - A priori knowledge of the vehicle mission
 - Dynamic programming, Pontryaguin minimum principle
- Forward models are developped to find sub-optimal solutions applicable in real time

Examples of solution studied in this step

- <u>3 levels for control and energy management strategy</u>
 - <u>Level 1</u> :
 - SOC regulation : Power demand function of SOC of each branch CVS power: $P_{CVS_i} = P_{res} * \left| 1 - (soc_i - soc_i) \right| / 4$
 - <u>Level 2</u> :
 - Loss minimization by adapting voltage level as a function of vehicle speed
 - Selection of active axle
 - <u>Level 3</u> :
 - Sharing power between battery and supercapacitor
 - Static look up tables (default strategy)
 - Dynamic control in order to minimize battery RMS currrent.

Minimize

 $J = \int I_{hm}^2 dt$

Example of optimization of level 2

Mapping of gains/losses between one and two axles

Minimizing losses by adapting DC bus voltage as a function of speed

Both strategy can be cumulated: This leads to a reduction of 2 to 4% of battery energy depending on the cycle

Example of level 3 optimization MIL1 : backward - dynamic programming

Example of level 3 optimization MIL1 : backward - Pontryaguin Minimum Principle

Example of level 3 optimization MIL2 : backward - Simplified calculation based on PMP

Example of level 3 optimization MIL3 : forward model – Simplified calculation based on PMP

- Choose an initial value for lagrange parameter, p
- Add a regulator to stabilize UC level of energy

Step 2 : Progressive integration of components

- A transition between Processor in the loop (PIL) to Hardware in the loop (HIL)
- At the beginning of this step, the model can even be compiled in the hardware
- The real components are progressively suppressed from the simulation model and integrated in the project
- An intensive use of test bench
- 2 examples:
 - Step 2.1 : Integration of the driver in the loop
 - Step 2.2 : Testing the application in an engine test bench

Step 2.1 : Driver in the loop test

A parenthesis : jitter response for this « soft » RT Modyves framework

Jitter response for the Modyves framework and two theoretical period of 100Hz and 1 kHz (~1 mn)

- Intel Core i7 3610QM 2.3 GHz
- Windows Seven

According to the pc characteristics, deviation from theoretical frequency could be important, but still far from human time response

Step 2.2 : HIL test on engine test bench

Step 2.2 : HIL test on engine test bench

Step 2.2 : HIL test on engine test bench

Step 3 : Control Prototyping with the final supervisor

- Coded in Simulink (~6000 elementary simulink blocks) with a many Stateflow charts on a dSpace micro-autobox
- Single tasking/single rate, loop frequency =1 kHz
- Four CAN network (Vehicle, EM, BMS and DC/DC converter, auxiliaries).
 For each critical frame, Rx time is scheduled in order to detect a default in the communication between ECU.
- ~20 analog or digitial inputs/outputs
- Wired Safety Lines between the supervisor and the electric machines, in redondance with a CAN based safety Line.

Structure of the supervisor

Each state of the diagram is associated with meta blocks which outputs the appropriate command

Comparisons between measure and simulation on SORT2 cycle

Cycle : SORT2_Bpneu Essai : rec1₀81.mat

Electrical power of one motor

Cycle : SORT2_Rpneu Essai : rec1₀81.mat

DC/DC converters power

- Some difficulties to stabilize the different converters power
- Each DC/DC ECU has its own low level control

Conclusion

- Electric bus with complex architecture has been designed
- Different levels of control were studied
- A progressive methodology of controller design is adopted :
 - Simulation approach (from simple to more realistic models)
 - Processor in the loop
 - Hardware in the loop
- This approach allows to built optimal control for energy management and supervisor
- Prototyping hardware makes the debugging phase more easy, but it's not an industrial solution
- C2000 cards from TI have been successfully tested with simulink applications and adapted to our needs (2 CAN, 16 ADC, 16 DI, 5 DIO, 4 PWM, 2 DAC)
- Modyves framework wants to be as generic as possible in order to connect any kind of inputs (example: the driver) to any kind of outputs.

Thanks for your attention

lfsttar

Contacts : <u>Bruno.jeanneret@ifsttar.fr</u> www.ifsttar.fr

