

Mathieu Dutré - Application Specialist MBSE

Analysis and optimization of physical models for HIL simulation

Restricted © Siemens AG 2014 All rights reserved.

Smarter decisions, better products.

SIEMENS

Industry drivers for HIL simulation

Restricted © Siemens AG 2014 All rights reserved.

Why this session? Prepare for HIL simulation

Provide support in the analysis and optimization of physical models prior to integration on an HIL system

- Understand reasons behind a "plant model crash"
- The different steps and need of model reduction techniques
- Connection between physical models and computer science
- Demonstration on the modal projection toolbox in context of HIL optimization
- Tricks to reduce the integration timestep requirements for your HIL platform

Restricted © Siemens AG 2014 All rights reserved.

Page 3 2015-04-15

Selecting the right model using LMS Imagine.Lab Amesim *Prepare for HIL simulation*

- The "proper model" is the one having the minimum complexity required to address the modeling objective (frequency range of interest)
- More details in your *.ame model, mean higher frequencies embedded in your model
- That could slow down CPU time in case these eigenvalues would be excited

Engineering questions prior to HIL integration Prepare for HIL simulation

- What would be an appropriate sample time for my model on the for RT platform?
- Can I lower requirements of my sample time on the HIL platform by lowering my model fidelity or change parameters?
- What kind of physical component(s) is critical for the stepsize definition?
- What is the critical linearization time for the model?
- How to use my variable step solver model to analyze if my model is ready for a fixed step solver ?

Restricted © Siemens AG 2014 All rights reserved.

How to connect physics to computer science? Catch up with Systems Theory

Siemens PLM Software

Integration Methods – Solver stability criterium Catch up with Systems Theory

 $x_{n+1} = a. x_n$ Or $x_{n+1} = a^n. x_0$ (This equation converges only if |a| < 1)

CRITERIUM for ODE1 INTEGRATION = $1 + h\lambda \le 1$

Restricted © Siemens AG 2014 All rights reserved.

Page 7 2015-04-15

Siemens PLM Software

-1

-2

0 $\mathcal{R}e(h,\lambda)$

SIEMENS

Connecting physics to computer science *Catch up with Systems Theory*

Restricted © Siemens AG 2014 All rights reserved.

Tool for analysis & optimization of plant models for RT Catch up with Systems Theory

How to do analysis for a complex physical system?

- Highlight the worst linearization time
- Highlight the worst frequency
- Highlight the majors State/variables/ components involved in each frequency
- Identify the correct maximum time step to use with Euler Solver (fixed step)
- Find variables by their names

67 🕘 sele	cted run: ref 👻									-
Time [s]	Frequency [Hz]	Damping [%]	Type ^	^	Related alias	State name		-		
0.0	1.69	100.00	time constant	1	dutch2K	differential angle	0.0		🏠 🖸 🖸 🕂 🧭 🏹 🖡	
2.0	1.94	100.00	time constant	2	dutch 1K	differential angle	0.0			-
3.0	32.72	100.00	time constant	3	veh2D_2ax_2	distance travele	0.0			
3.5	36.81	100.00	time constant	4	3dbloc	absolute velocity	0.0			
4.0	36.90	100.00	time constant	5	3dbloc	absolute velocity	0.0			
9.0	37.18	100.00	time constant	6	3dbloc	absolute velocity	0.0			
22.0	96.81	100.00	time constant	7	3dbloc	absolute position	0.0	=	23	
42.0	97.32	100.00	time constant	8	3dbloc	absolute position	0.0			20
55.0	120.03	100.00	time constant	9	3dbloc	absolute position	0.0		26.00	
105.0	126.72	100.00	time constant	10	3dbloc	engine rotary vel.	0.0		20.97	22.7%
	159.15	100.00	time constant	11	3dbloc	engine rotary vel	0.0			
	1.05	37.03	oscillating more	12	3dbloc	engine rotary vel	0.0			
	1.27	40.38	oscillating mor	13	3dbloc	engine Euler angl	0.0			
	2.97	87.43	oscillating mor	14	3dbloc	engine Euler angl	0.0			13.0%
	5.40	21.39	oscilating mor	15	3dbloc	engine Euler angl.	0.0			13.8%
	6.03	16.04	oscillating mor	16	wheel_tyre_1	wheel rotary vel	0.0		35.2%	29
	8.79	7.15	oscillating mor =	17	anglesensor	angular displace	0.0			
	8.87	16.92	oscillating more	18	wheel_tyre	wheel rotary vel	0.0			
	10.42	13.78	oscillating mor	19	anglesensor_2	angular displace	0.0		24	
	12.42	54.40	oscillating mor	20	gear2K	relative angular	22.7			
	12.63	54.34	oscillating mor	21	gear4K	relative angular	0.0			
	13.05	51.24	oscillating mor	22	gear3K	relative angular	0.0			
	13.05	51.24	oscillating mor	23	gear 1K	relative angular	26.9			
	13.38	10.41	oscillating mor	24	input23	shaft speed port 2	35.2		View parameters	
	16.74	15.27	oscillating mor	25	gear6K	relative angular	0.0		bar chart pie chart fitering tiveshold	
	18.28	43.19	oscillating more	26	gearSK	relative angular	0.0			 mpulse response
	48.18	12.00	oscillating mor	27	trans]	shaft speed port 2	0.9			
	99.94	80.01	oscillating mor	28	transK	relative angular	0.4			10 %
	99.99	80.00	oscillating more	29	input1J	shaft speed port 2	13.8			
	185.16	60.23	oscillating mor +	30	ICE	losses due to col	0.0			

BENEFITS:

- → Adapt your level of model easily and fast, tune the value of parameters
- Check that your simplified model is still providing accurate results

Restricted © Siemens AG 2014 All rights reserved.

Page 9 2015-04-15

Model reduction workflow Catch up with Systems Theory

Restricted © Siemens AG 2014 All rights reserved.

Siemens PLM Software

Starting point: a high fidelity model of the vehicle, its detailed transmission and actuators

Application example: Optimize a DCT model for HIL

•

•

RESULCEU - SICHENS AG 2014 AN HUMB TESCIVEU.

Transmission actuators

SIEMENS

GOAL

C1 clutch comm from 0 to 100%

Analyze and reduce a detailed model for fixed time step solvers and Real Time simulations

Application example: Optimize a DCT model for HIL

SIEMENS

2) ADD linearization time for critical computation times

Name	Time	Unit	
Start time	0	seconds	
	2	seconds	
	3	seconds	
	3.5	seconds	
	4	seconds	
	9	seconds	
	22	seconds	
	42	seconds	
	55	seconds	
	105	seconds	
	(Add	Remove

3) ANALYZE and OPTIMIZE the physical components and parameters for fixed step solver requirements

Time [s]	requency [Hz]	amping [%	ту ^		Related alias	State name	Ene	r 🔺	🖬 💽 🔍 🔍 🔍 🕴 🔶 🚽
0.0	15.37	100.00	time cor	7	3dbloc	absolute po	0.0		
2.0	22.47	100.00	time cor	8	3dbloc	absolute po	0.0		10
3.0	27.71	100.00	time cor	9	3dbloc	absolute po	0.0		19
3.5	27.01	100.00	time cor	10	3dbloc	engine rota	0.0		24
4.0	28.44	100.00	time cor	11	3dbloc	engine rota	0.0		Others
9.0	08.24	100.00	time cor	12	3dbloc	engine rota	0.0		24
22.0	09 70	100.00	time cor	13	3dbloc	engine Eule	0.0		13.8 %
42.0	121.09	100.00	time cor	14	3dbloc	engine Eule	0.0		22.7 %
55.0	127.62	100.00	time cor	15	3dbloc	engine Eule	0.0	-	
105.0	150.15	100.00	time cor	16	gear2K	relative an	22.7		
	1.06	25.72	oscillatir	17	gear3K	relative an	0.0		
	1.00	40.12	oscillatir	18	gear1K	relative an	26.9		
	2.55	99.22	oscillatir	19	input2J	shaft speed	35.2		
	5.40	21.40	oscillatir	20	gear6K	relative an	0.0		19
	6.05	16.24	oscillatir	21	gear5K	relative an	0.0		5.2 % 18
	8 70	715	oscillatir	22	transJ	shaft speed	0.9		26.9 %
	8.85	1749	oscillatir E	23	transK	relative an	0.4		
	10.46	13 50	oscillatir	24 25 26 27 28	input1J	shaft speed	13.8		
11 11 11 11 11 11 11 11 11 11 11 11 14 44 99 99 99	12.30	54.50	oscillatir		ICE	losses due	0.0		
	12.55	54.34	oscillatir		ICE	BMEP dyna	0.0		
	13.05	51.24	oscillatir		ICE	total fuel c	0.0		
	13.05	51.24			valve2	normalized	0.0		
	13 39	10.30	oscillatir	29	valve2	spool velocity	0.0		View parameters
	16.78	15.04	oscillatir	30	piston2	displaceme	0.0		
	48.18	12.00	oscillatir	31	piston1	displaceme	0.0		view type pie chart
	99.93	80.01	oscillatir	32	valve1	normalized	0.0		filtering threshold
	99,99	80.00	oscillatir	33	valve1	spool velocity	0.0		Intering threshold
	185.16	60.23	oscillatir 👻	34	start_up.elec	output fro	0.0 - Colom Z Lolom Z Lolom	Colom Z Lolom Z Lolom	
	4 111	00125	boomden	171					V Celem. V Telem. V O elem.

Typical changes towards HIL integration *Model reduction of a Hybrid Hydraulic vehicle*

HIL compatible model Model reduction of a Hybrid Hydraulic vehicle

Restricted © Siemens AG 2014 All rights reserved.

Page 14 2015-04-15

There's much more to say... Siemens solutions for Solution setup for XiL

Summary

LMS Amesim: Platform to support you in physical modeling activities going from detailed component design to controls validation

Model reduction capability: Toolbox and process in place to support simplification of models towards HIL integration

Platform openness: Amesim allows HIL integration on a variety of HIL platforms

Knowledge transfer: Siemens PLM has specialized engineering teams that can support you in your challenges related to xIL testing.

Restricted © Siemens AG 2014 All rights reserved.

Page 16 2015-04-15

Thank you! Questions?

Mathieu DUTRE Application Specialist, MBSE mathieu.dutre@siemens.com +32472409225

Restricted © Siemens AG 2014 All rights reserved.

Smarter decisions, better products.