

HIL'16 summer school Lille, 1-2 September 2016

http://l2ep.univ-lille1.fr/hil2016/

« Energetic Macroscopic Representation for organization of HIL simulation »

Dr. Clément MAYET Prof. Alain BOUSCAYROL (L2EP, University Lille1)

HIL'16, Lille Sept. 2016

1. Energetic Macroscopic Representation

2. HIL simulation using EMR

3. Example of an Electric Vehicle

HIL simulation:

Includes a hardware part, a software part and a specific interface

many different subsystems have to be connected.

[Bouscayrol 11]

HIL'16, Lille Sept. 2016

HIL simulation =

How to organize in the right way the numerous subsystems to be connected ?

REAL-TIME SIMULATION

HIL'16, Lille Sept. 2016

1. Energetic Macroscopic Representation (EMR)

.

Model organization

• Control organization

Causality principle

7

HIL'16, Lille Sept. 2016

[lwasaki 96] [Hautier 04]

HIL'16, Lille Sept. 2016

Interaction principle Each action induces a reaction S1 action S2 reaction power Power exchanged by S1 and S2 = action x réaction

<u>Example</u>

[Paynter 61] [Bouscayrol 00]

Energetic Macroscopic Representation (EMR)

HIL'16, Lille Sept. 2016

Energetic Macroscopic Representation (EMR)

HIL'16, Lille Sept. 2016

Example of EMR element

Structural description

Initial relationship

$$T_1 = J \frac{\mathrm{d}}{\mathrm{dt}} \, \Omega + f \Omega + T_2$$

Rotating shaft

(Ω state variable)

causal relationship

$$\Omega = \frac{1}{2} \int (T_1 - f\Omega - T_2) dt$$

(output as an integal function of inputs)

functional description (EMR)

accumulation element $(\Omega \text{ output at both sides})$

$$E = \frac{1}{2} J \Omega^2$$

EMR = organization of the model in respect with the interaction and causality principles

EMR elements

all elements connected by action/ reaction (power link) (interaction)

all power I/O defined by accumulation elements (causality)

only conversion elements can have tuning inputs

element association according the holistic principle (Systemics)

Inversion-based control scheme

HIL'16, Lille Sept. 2016

15

Inversion of EMR elements

HIL'16, Lille Sept. 2016

conversion element $y(t) = k u(t) \longrightarrow u_{ref}(t) = \frac{1}{k} y_{ref}(t)$ direct inversion $y(t) = k u(t) \longrightarrow u_{ref}(t) = \frac{1}{k} y_{ref}(t)$

accumulation element

 $y(t) = \int u(t) dt \longrightarrow u_{ref}(t) = C(t) [y_{ref}(t) - y_{meas}(t)] \leftarrow u_{ref}(t)$

coupling element

distribution criteria

closed-loop control

$$y(t) = u_1(t) + u_2(t)$$

$$\begin{cases} u_1(t) = k_D(t)y(t) \\ u_2(t) = (1 - k_D(t))y(t) \end{cases}$$

[Hautier 04] [Bouscayrol 12]

HIL'16, Lille Sept. 2016

1. EMR of the system

- 2. Tuning path
- 3. Inversion step-by-step

Strong assumption: all variables can be measured!

Maximal Control Structure (or scheme):

- maximum of sensors
- maximum of operations

Example:

- 4 sensors
- 2 closed-loop controllers

HIL'16, Lille Sept. 2016

1. EMR of the system

- 2. Tuning path
- 3. Inversion step-by-step Strong assumption: all variables can be measured!

HIL'16, Lille Sept. 2016

2. EMR for organization of HIL simulation

.

- EMR for control
- EMR for HIL

HIL simulation using EMR

Objective: test of new power subsystem before implementation in a real vehicle

Systematic organization using EMR:

- organization of the numerous subsystems
- definition of the interface subsystem

control

UII'16 Lillo Sont 2016

HIL simulation using EMR (2)

Objective: test of new power subsystem before implementation in a real vehicle

Systematic organization using EMR:

- organization of the numerous subsystems
- definition of the interface subsystem

Different objectives = different Power HIL simulation

HII '16 Lilla Sant 2016

HIL simulation using EMR (2)

Objective: test of new power subsystem before implementation in a real vehicle

Systematic organization using EMR:

- organization of the numerous subsystems
- definition of the interface subsystem

Example of an EV power control model

UII'16 Lillo Sont 2016

Example of HIL simulation of a HEV

24

HIL'16, Lille Sept. 2016

Objective of the "electricity & vehicle" (eV) platform of the control team:

real-time validation of energy management of new vehicle concepts for more efficient and less pollutant transportation systems

Ex: PhD of T. Letrouvé (double parallel HEV of PSA)

Simulation of the 3008 HY4 using EMR

HIL simulation of the 3008 HY4 traction system (« ev » platform)

PSA PEUGEOT CITROËN

validation of the control on the 3008 HY4 prototype

HIL'16, Lille Sept. 2016

3. Example of a EV traction system

......

- EMR of the studied EV
- HIL simulation of the studied EV

Traction of the studied EV: VSI + Induction machine + differential + 2 driven wheels

Drive implementation for an Electric Vehicle ?

1. Simulation of the EV (drive + vehicle dynamics)

2. Test of the actual traction drive

HIL simulation

3. Test of the whole prototype

EMR of the studied system

27

Maximum control scheme

HIL simulation organization

31

HIL'16, Lille Sept. 2016

References

.......

Refrences

- [Bouscayrol 00] A. Bouscayrol, & al. "Multimachine Multiconverter System: application for electromechanical drives", *European Physics Journal Applied Physics*, vol. 10, no. 2, May 2000, pp. 131-147 (common paper GREEN Nancy, L2EP Lille and LEEI Toulouse, according to the SMM project of the GDR-SDSE).
- [Bouscayrol 06] A. Bouscayrol, W. Lhomme, P. Delarue, B. Lemaire-Semail, S. Aksas, "Hardware-in-the-loop simulation of electric vehicle traction systems using Energetic Macroscopic Representation", *IEEE-IECON'06*, Paris, November 2006, (common paper L2EP Lille and dSPACE France).
- [Bouscayrol 11] A. Bouscayrol, "Hardware-In-the-Loop simulation", Industrial Electronics Handbook, second edition, tome "Control and mechatronics", Chapter 33, CRC Press, Chicago, March 2011, pp. 33-1/33-15, ISBN 978-1-4398-0287-8.
- [Bouscayrol 12] A. Bouscayrol, J. P. Hautier, B. Lemaire-Semail, "Graphic Formalisms for the Control of Multi-Physical Energetic Systems", Systemic Design Methodologies for Electrical Energy, tome 1, Analysis, Synthesis and Management, Chapter 3, ISTE Willey editions, October 2012, ISBN: 9781848213883
- [Chen 08] K. Chen, A. Bouscayrol, W. Lhomme, "Energetic Macroscopic Representation and Inversion-based control: Application to an Electric Vehicle with an electrical differential", Journal of Asian Electric Vehicles, Vol. 6, no.1, June issue, 2008, pp. 1097-1102.
- [Hautier 04] J. P. Hautier, P. J. Barre, "The causal ordering graph A tool for modeling and control law synthesis", Studies in Informatics and Control Journal, December 2004, Vol. 13, No. 4, pp. 265-283.
- [Iwasaki 96] I. Iwasaki, H. A. Simon, "Causality and model abstraction", Artificial Intelligence, Elsevier, 1994, Vol. 67, pp. 143-194..
- [Lhomme 14] W. Lhomme, P. Delarue, A. Bouscayrol, P. Barrade, "La REM, formalismes multiphysique de commande des systèmes énergétques", Les Techniques de l'Ingénieur, Référence D3066, Novembre 2014.
 [Paynter 61] H. Paynter, "Analysis and design of engineering systems", MIT Press, 1961