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Résumé étendu 

Contexte 

L'optimisation consiste à choisir un ensemble de variables qui optimisent les objectifs 

soumis aux contraintes de bon fonctionnement. Cependant, dans la vie réelle, les variables 

ne sont pas toujours déterministes car des incertitudes sont apportées par 

l’environnement, le modèle, la mesure et les dimensions. Dans cette thèse, on considère 

uniquement la dernière source d’incertitude. Ces dernières se propagent et peuvent 

provoquer des performances instables qui sont liées à la robustesse ou la violation des 

contraintes qui se rapportent à la fiabilité ainsi que d’autres conséquences inattendues. Il 

est donc important de prendre en compte les incertitudes pendant l'optimisation afin 

d’améliorer la faisabilité de la solution obtenue. 

Aujourd'hui, de nombreuses universités et laboratoires travaillent sur l’optimisation 

dans le génie électrique, notamment pour la conception des dispositifs 

électromagnétiques. 

Des chercheurs de l’université de l’Iowa en Les États-Unis travaillent sur des nouvelles 

méthodes de conception par optimisation fiable (reliability-based design optimization, 

RBDO) pour un processus en deux-niveaux. Ces méthodes sont utilisées pour la 

conception des dispositifs électromagnétiques dans des véhicules militaires à chenilles.  

Les chercheurs de l’institut coréen de sciences et de technologie de l’information 

travaillent à l’innovation de SMES (Superconducting Magnetic Energy Storage System) Ils 

fournissent des services de modélisation et de simulation basés sur des super-ordinateurs 

qui raccourcissent considérablement la période de développement technologique et de 

réduire son coût. La méthode RIA est utilisée pour traiter les incertitudes. 

L’université nationale de Chungbuk en Corée du sud propose une méthode qui combine 

RBDO et RDO (robust design optimization). Cet algorithme est proposé sur la base du pire 

scénario et fournit une approximation pour l’évaluation de la robustesse. La méthode SA-

MCS (sensitivity-assisted Monte Carlo simulation) est aussi développée pour évaluer 

efficacement la fiabilité pour des problèmes électromagnétiques. L’algorithme est déjà 

appliqué au problème de TEAM 22 (SMES Optimisation Benchmark) et les résultats 

montrent qu’il peut trouver efficacement une bonne solution parmi toutes les 

caractéristiques de qualité. 

L’université Tongji en Chine utilise l’optimisation probabiliste pour faire la conception 

avancée et la fabrication des carrosseries de véhicule. Les chercheurs proposent des 

méthodes RBDO ou RDO multi-objectif avec la méthode des surfaces de réponse en 

remplacent la simulation par la méthode des éléments finis pour améliorer l’efficacité. Ces 
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méthodes ont déjà été utilisées pour la conception d’une porte de véhicule et 

l’amélioration de la durée de vie d’une cabine de camion. 

Il y a aussi d’autres pays qui travaillent sur ce domaine, surtout en France. Par exemple, 

à l’université de Grenoble, des chercheurs travaillent sur les moteurs électriques et les 

actionneurs électromagnétiques. A l’Université de Technologie de Compiègne, des 

chercheurs proposent des méthodes appliquées à un alterno-démarreur automobile et 

des concepteurs de l’Université de Toulouse optimisent la conception des avions. 

Le but de cette thèse est de comparer les différentes méthodes et d’en faire une 

synthèse pour aider les concepteurs qui ne sont pas des spécialistes de l’optimisation à 

choisir les méthodes les plus appropriées à leurs besoins et les plus efficaces. Les modèles 

éléments finis étant très utilisés pour la conception des dispositifs électrotechniques, des 

nouvelles méthodes adaptées aux modèles lourds sont également proposées. 

Méthodes d’optimisation avec incertitudes 
Dans cette partie, les différentes catégories d’optimisation avec incertitudes sont 

présentées en détail puis l’approche la plus efficace dans chaque catégorie est mise en 

évidence. 

Les méthodes d’optimisation avec incertitudes peuvent être divisées en quatre grandes 

catégories. L’optimisation dans le pire cas, robuste, fiable et puis robuste et fiable. 

L’optimisation dans le pire cas (worst-case optimization en anglais ou WCO en bref) 

utilise les bornes de distribution pour trouver le pire cas causé par l’incertitude. 

Optimisation robuste (robust design optimization en anglais ou RDO comme abréviation) 

se concentre sur la recherche d'une solution stable en utilisant la moyenne et l’écart-type 

des variables d’entrée. L’optimisation fiable (reliability-based design optimization en 

anglais ou RBDO) utilise la densité de probabilité des variables d’entrée pour calculer la 

probabilité de défaillance. Enfin, la dernière méthode RBRDO (abréviation de reliability-

based robust design optimization) est une combinaison de robuste et fiable. Maintenant, 

on va présenter des détails de chaque catégorie. 

Optimisation dans le pire cas (WCO) 

L’optimisation dans le pire cas crée un ensemble d’incertitudes autour de chaque point 

de conception. Cet ensemble présente les performances possibles causées par les 

incertitudes. WCO s'assure que même les sorties les plus défavorables causées par des 

incertitudes peuvent respecter les contraintes. 

On peut utiliser un exemple simple pour l’expliquer. Il comprend une variable d’entrée 

𝑑  et une contrainte 𝑔  où la partie hachurée est la partie de défaillance, les segments 

autour des points de conception représentent les performances possibles causées par 

l’incertitude. Et on peut voir que l’optimum déterministe qui ne considère pas des 
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incertitudes ne satisfait pas la contrainte dans le pire cas car l’extrémité de segment c’est-

à-dire le pire cas de ce point de conception est dans le domaine de défaillance. Par contre, 

le point bleu devient l’optimum dans le pire cas parce que le pire cas se situe dans l’état-

limite 𝑔 = 0 c’est-à-dire tous les situations possibles ne violent pas la contrainte. 

 

Fig. 1. L’optimum déterministe, l’optimum du pire cas et l’ensemble d’incertitude 

Pour créer l’ensemble d’incertitude autour de point de conception, il y a plusieurs de 

définition. Dans cette thèse on utilise l’expression ci-dessous : 

 𝑈(𝒅) = {𝝃 ∈ ℝ𝑝|𝒅 − 𝑘𝝈 ≤ 𝝃 ≤ 𝒅 + 𝑘𝝈} (1) 

où 𝑘 est le niveau de confiance décidé par le concepteur, 𝑘 est plus grand signifie qu’il y a 

plus de possibilité que les valeurs d’entrée influencées par les incertitudes se situent dans 

cet ensemble.  

La formulation d’optimisation dans le pire cas peut être exprimée comme un problème 

de minimax : 

 

min
𝒅∈𝑆

𝑓𝑤(𝒅)

soumis à  𝒈𝑤(𝒅) ≤ 0

avec      
𝑓𝑤(𝒅) = max

𝝃∈𝑈(𝒅)
𝑓(𝝃)

𝒈𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

𝒈(𝝃)

 (2) 

Pour résoudre ce problème, cette thèse utilise trois différents types de méthodes. La 

première est WCO traditionnel avec deux boucles imbriquées. Elle utilise un sous 

problème d’optimisation pour trouver le pire des cas pour l’objectif et les contraintes. 

Cependant, comme il y a une boucle d‘optimisation nichée dans une autre, ce processus 

nécessite un trop grand temps de calcul. 

Afin de gagner du temps, le deuxième type de méthode n’évalue que les bornes. Il 

s’appelle Worst-vertex WCO en anglais ou WWCO. Le principe est d’évaluer les bornes de 
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chaque variable dans l’ensemble d’incertitude puis de déterminer les directions dans 

lesquelles les valeurs des fonctions augmentent. On suppose que le sommet qui se situe 

dans ces directions est le pire cas.  

Le troisième type est Gradient-based WCO ou GWCO en bref. Il utilise le gradient et un 

développement de Taylor au premier ordre. Grâce à l’inégalité de Cauchy-Schwarz, la 

majoration du pire des cas peut être déduite et remplacer les pires performances réelles. 

Cette méthode utilise encore moins d’évaluations que WWCO mais en raison de la 

majoration, les pires valeurs dépassent quelques fois l’ensemble d’incertitude. 

Donc, en considérant la précision et la vitesse de convergence, WWCO est le plus 

efficace entre ces trois types. 

Optimisation robuste (RDO) 

La deuxième catégorie d’optimisation avec incertitudes est l’optimisation robuste. 

Robustesse signifie que la solution est moins sensible aux incertitudes sur les entrées, 

c’est-à-dire qu’un petit changement d’entrée n’apporte pas de grandes variabilités de 

sortie. On peut utiliser le même exemple unidimensionnel pour l’expliquer : 

 

Fig. 2. L’optimum déterministe et l’optimum robuste 

𝑑𝑚𝑖𝑛
  et 𝑑𝑚𝑖𝑛

′  sont l’optimum global et un optimum local respectivement, ∆𝑓 et ∆𝑓′ sont 

les variances de sortie causées par les incertitudes d’entrée autour de  𝑑𝑚𝑖𝑛
  et 𝑑𝑚𝑖𝑛

′ . ∆𝑓 

est beaucoup plus grande que ∆𝑓′ donc 𝑑𝑚𝑖𝑛
′  est moins sensible ou plus robuste que 𝑑𝑚𝑖𝑛

 . 

Ainsi le but de l’optimisation robuste est de minimiser la fonction objectif et sa variance 

en même temps. C’est donc un problème multi-objectif et la formulation est écrite comme 

suit : 
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min
𝒅
𝑓𝑟 (𝜇𝑓(𝒅), 𝜎𝑓(𝒅))

soumis à   𝒈𝒓 (𝝁𝒈(𝒅), 𝝈𝒈(𝒅)) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (3) 

où 𝒅𝐿  et 𝒅𝑈  sont des bornes inférieure et supérieure des variables d’entrée, 𝑘  est le 

niveau de confiance comme dans l’optimisation dans le pire cas, 𝑓𝑟 et  𝒈𝒓 sont la fonction 

objectif robuste et les contraintes robustes calculées à partir des moments statistiques  

𝜇𝑓 , 𝜎𝑓 , 𝜇𝑔, 𝜎𝑔. 

Pour résoudre ce problème, 9 différentes formulations sont utilisées et comparées 

dans cette thèse. Elles peuvent être divisées en deux sous-types de méthodes : le premier 

type est mono-objectif et transforme la formulation en adjoignant le deuxième objectif au 

premier. Les trois transformations testées dans la thèse sont présentées dans le tableau 

suivant : 

Tableau 0. Formulations pour des méthodes mono-objectif 

Formulation 1 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

Formulation 2 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) + 𝑘𝜎𝑓(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

Formulation 3 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) |𝜇𝑓0|⁄ + 𝑘 𝜎𝑓(𝒅) 𝜎𝑓0⁄  𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

 

Avec ce tableau on peut voir que ces transformations fixent le poids entre la moyenne 

et l'écart-type. Donc, elles ne trouvent qu’une seule solution. 

Puis un autre type de méthodes est multi-objectif et traite la moyenne et l’écart-type 

comme deux objectifs différents afin d'obtenir un front de Pareto. Six formulations 

appartenant à 3 différentes méthodes sont présentées. La première est 𝜀-contrainte et 

transforme le problème multi-objectif en une série de problèmes mono-objectif avec une 

contrainte supplémentaire de sorte qu’un algorithme mono-objectif est adapté. La 

deuxième est la méthode pondérée qui combine aussi deux objectifs ensemble mais cette 

fois avec un poids qui change sa valeur entre 0 à 1 pour obtenir différentes solutions. La 

dernière approche ne change pas la formulation mais elle utilise des algorithmes multi-

objectif directement. Les formulations principales sont présentées dans le tableau 

suivant : 

Tableau 2. Formulations pour des méthodes multi-objectif 

𝜀-contrainte 𝒇𝒓(𝒅) = 𝝁𝒇(𝒅) 

𝒈𝒓𝟏(𝒅) = 𝝁𝒈(𝒅) + 𝒌𝝈𝒈(𝒅) 

𝒈𝒓𝟐(𝒅) = 𝝈𝒇(𝒅) − 𝝈𝒕, 

𝝈𝒕 ∈ [𝝈𝒇𝒎𝒊𝒏, 𝝈𝒇𝒎𝒂𝒙] 

méthode pondérée 𝒇𝒓(𝒅) = 𝝎𝝁𝒇(𝒅) + (𝟏 − 𝝎)𝝈𝒇(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝒌𝝈𝒈(𝒅) 

algorithmes multi-

objectif 
𝒇𝒓𝟏(𝒅) =𝝁𝒇(𝒅), 𝒇𝒓𝟐(𝒅) =𝝈𝒇(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝒌𝝈𝒈(𝒅) 
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𝝈𝒇𝒎𝒊𝒏, 𝝈𝒇𝒎𝒂𝒙 sont les bornes de 𝝈𝒇, 𝝎 est le poids pour la pondération. En ajoutant la 

normalisation, on peut avoir 6 formulations différentes. Entre ces trois approches, 𝜀 -

contrainte peut toujours trouver un front par contre le résultat de la méthode de somme 

pondérée ne fonctionne qu’avec un front convexe et l’algorithme de multi-objectifs est 

plus lent, donc le premier est le plus efficace. 

Optimisation fiable (RBDO) 

La troisième catégorie d’optimisation avec incertitude est l’optimisation fiable. Elle fixe 

une valeur probabiliste maximale acceptable pour remplacer la contrainte initiale et la 

probabilité de défaillance doit être plus petite que cette valeur donnée. La probabilité de 

défaillance est la probabilité que la valeur de contrainte est supérieure à 0. 

Dans la figure ci-dessous, le point rouge est un point de conception. On dessine la 

densité de probabilité sur ce point et la probabilité de défaillance est l’intégration de la 

densité de probabilité sur la partie rouge. 

 

Fig. 3. La probabilité de défaillance 

Le but de l’optimisation fiable est de trouver une solution dont les probabilités de 

défaillance pour toutes les contraintes respectent les nouvelles contraintes probabilistes. 

La formulation est changée par l’expression ci-dessous : 

 

min
𝑑
𝑓(𝑑)

soumis à   𝑃𝑓 = 𝑃(𝑔(𝑋) > 0) ≤ 𝑃𝑡

𝑑𝐿 + 𝑘𝜎 ≤ 𝑑 ≤ 𝑑𝑈 − 𝑘𝜎 

 (4) 

où 𝑃𝑓 est la probabilité de défaillance et 𝑃𝑡  est la probabilité cible fixée. 
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Selon les différentes façons de calculer les probabilités, RBDO peut être divisé en trois 

différents types de méthodes. Le premier s’appelle les méthodes de double-boucle et 

utilise la méthode de fiabilité du premier ordre pour calculer la probabilité de défaillance 

dans la boucle intérieure. La boucle extérieure a pour objectif de chercher les optima en 

utilisant la probabilité calculée par la boucle intérieure. Les deux approches les plus 

utilisées sont présentées dans cette thèse. RIA (reliability index approach) cherche 

itérativement le point de conception avec la plus forte probabilité de défaillance dans la 

boucle intérieure. L’objectif de la boucle intérieure de PMA (Performance Measure 

Approach) est de trouver le point de performance (contrainte) maximale correspondant 

à l’indice de fiabilité cible. PMA est plus robuste et plus efficace quand la contrainte 

probabiliste est inactive alors que RIA est plus efficace pour une contrainte probabiliste 

violée mais elle pourrait donner une singularité lorsque la contrainte est inactive. 

Le deuxième type de méthodes utilise une approximation pour calculer la probabilité 

de défaillance. Ainsi, la boucle intérieure n’est plus une optimisation et c’est la raison pour 

laquelle ces méthodes s’appellent les méthodes simple boucle. Deux approches sont 

présentées en détail dans cette thèse : AMA (Approximate Moments Approach) et SLA 

(Single Loop Approach). La différence entre ces deux méthodes est que SLA évalue les 

contraintes à l’approximation du point de performance maximale contrairement à AMA 

qui utilise une approximation de premier ordre de la contrainte autour de la valeur 

moyenne. 

Enfin, le troisième type de méthodes est séquentiel découplé et vise à changer le 

problème initial en une série de cycles d’optimisation. Chaque cycle séquentiel comprend 

une optimisation déterministe et une analyse de fiabilité. Deux méthodes SORA 

(Sequential Optimization and Reliability Assessment) et SAP (Sequential Approximate 

Programming) sont présentées. La seconde méthode utilise des approximations et elle est 

donc plus rapide que la première mais elle peut ne pas converger si le problème est 

complexe. 

Après la comparaison de ces approches, les résultats montrent que la méthode 

séquentielle est la plus efficace notamment SORA alors que les méthodes double boucle 

ont besoin de trop de temps et les méthodes simple boucle ne sont pas assez précises. 

Optimisation robuste et fiable (RBRDO) 

La dernière catégorie RBRDO est un mélange de deux catégories précédentes. Le but 

de la robustesse est de trouver une solution dont la variabilité de l’objectif est faible alors 

que la fiabilité trouve une solution éloignée de l'état limite des contraintes. Il est donc 

intéressant d’avoir une formulation qui peut conduire à un optimum robuste et fiable à la 

fois. 

Comme pour les méthodes RDO, les méthodes RBRDO exploitent des formulations 

mono-objectif et multi-objectif. Les premières ne trouvent qu’une seule solution. Pour les 
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secondes, il y a trois formulations selon les objectifs de conception. Nominal-the-best 

trouve la solution dont la valeur de l’objectif est la plus proche d’une valeur cible tout en 

minimisant l’écart-type de l’objectif. Smaller-the-better minimise la moyenne et l’écart-

type de l’objectif en même temps. Enfin, larger-the-better vise à maximiser la moyenne et 

minimiser l’écart-type. Comme dans notre cas on ne considère que des problèmes de 

minimisation, seules les deux premières formulations sont adaptées. Les formulations 

sont présentées dans le tableau ci-dessous : 

Tableau 3. Formulations pour des méthodes RBRDO 

Nominal-the-best 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 (
𝜇𝑓 − 𝑓𝑡

𝜇𝑓0 − 𝑓𝑡
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

Smaller-the-better 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ 𝑠𝑖𝑔𝑛(𝜇𝑓) (
𝜇𝑓

𝜇𝑓0
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

Larger-the-better 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ 𝑠𝑖𝑔𝑛(𝜇𝑓) (
𝜇𝑓0
𝜇𝑓
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) 

Synthèse 

Après la présentation des quatre catégories d’optimisation intégrant les incertitudes, 

une synthèse est faite pour aider les concepteurs à choisir la méthode la plus appropriée 

à leurs besoins. WCO trouve une solution au problème de conception qui minimise 

l’objectif tout en respectant les contraintes dans le pire des cas. C’est une optimisation 

qu’on peut qualifier de conservatrice et peut conduire à un surdimensionnement. RDO est 

capable de trouver une conception peu sensible aux incertitudes et donc une performance 

plus stable. L'objectif principal de RBDO est d'identifier un optimum satisfait une 

probabilité de défaillance donnée. Il convient à une conception en grande série à moindre 

coût avec un taux de défaillance faible. RBRDO se concentre sur l'obtention d’une 

conception robuste et fiable en même temps. 

 

Fig. 4. Les exigences de temps pour chaque catégorie d’optimisation avec incertitudes 
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Les objectifs de conception variant selon les catégories type de méthodes, il n’est pas 

pertinent de prouver qu’une catégorie domine les autres. Par contre, on peut les classer 

par rapport aux temps nécessaires à la quantification des incertitudes et à l’optimisation. 

La figure ci-dessus montre les exigences de temps pour les quatre catégories et le guide 

pour aider les concepteurs à choisir la méthode appropriée. La figure indique le temps 

d’optimisation et aussi le temps d’analyse de la variance d’entrée, c’est-à-dire l’analyse 

des extrema, des moments statistiques ou des densités de probabilité qui sont nécessaires 

aux optimisations spécifiques. Puisque WCO ne demande que des extrema, il n’a besoin 

que de très peu de temps pour l’analyse alors que pour RBDO et RBRDO, le temps 

d’analyse augmente pour obtenir des histogrammes approchant les densités de 

probabilité. Avec cette figure, les concepteurs peuvent choisir la catégorie d’optimisation 

avec incertitudes pour traiter leurs problèmes de conception selon le temps dont ils 

disposent. Si l’échantillonnage de variables d’entrée du système prend du temps, c’est 

mieux de choisir les méthodes qui n’ont pas besoin d’un trop grand échantillon pour 

l’analyser les variances. Dans ce cas, si les concepteurs veulent avoir une solution moins 

sensible, RDO est la méthode la plus appropriée, sinon ils peuvent se contenter de WCO 

qui sera encore plus rapide. Par contre, si le temps n’est pas un problème, les deux autres 

méthodes peuvent être utilisées : RBDO est plus appropriée si l’on se concentre sur la 

probabilité de défaillance, sinon RBRDO est plus général. 

Optimisation avec méta-modèle 

Les méthodes précédentes ne sont adaptées que pour des modèles rapides. Si le modèle 

est lourd comme dans le cas des éléments finis, l’optimisation prendra beaucoup trop de 

temps. Ainsi, on a besoin de trouver de nouvelles méthodes capables de traiter des 

modèles numériques lourds. 

Le méta modèle est choisi pour nous aider. L'objectif du méta-modèle est de quantifier 

la structure spatiale d'une fonction et de prédire une valeur avec des échantillons limités. 

Il existe plusieurs méthodes de méta-modèle comme, par exemple, la méthode des 

surfaces de réponses, les fonctions de base radiale et le krigeage. Comme cette dernière 

est une méthode très utilisée, elle est choisie dans cette thèse. Le modèle est composé de 

deux parties : la moyenne 𝜇𝑌(𝒙)  est la partie déterministe et le processus gaussien 

𝑍(𝒙) est la partie stochastique. Ainsi 𝑌 (𝒙) est la prédiction à la position 𝒙 : 

 𝑌(𝒙) = 𝜇𝑌(𝒙) + 𝑍(𝒙) (5) 

Pour combiner le méta-modèle et l’optimisation, il faut créer une stratégie qui peut 

trouver l’optimum global et améliorer la précision de méta modèle en même temps. Nous 

avons donc besoin d'un critère d’enrichissement pour nous indiquer où ajouter de 

nouveaux échantillons. 
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Critères d’enrichissement 

Le critère le plus célèbre s’appelle expected improvement ou EI en bref : 

 𝐸𝐼(𝒅) = [𝑓𝑚𝑖𝑛 − 𝑓(𝒅)]𝛷 (
𝑓𝑚𝑖𝑛−�̂�(𝒅)

�̂�(𝒅)
)     +     �̂�(𝒙)𝜙 (

𝑓𝑚𝑖𝑛−�̂�(𝒅)

�̂�(𝒅)
) (6) 

où 𝛷  et 𝜙  représentent la fonction de répartition et la densité de probabilité pour la 

distribution normale centrée réduite et 𝑓𝑚𝑖𝑛 est la meilleur valeur courante, 𝑓(𝒅) est la 

valeur prévu, �̂�(𝒅) représente l’erreur. 

La première partie d’EI présente la probabilité que la valeur de 𝑓  est plus petite 

que 𝑓𝑚𝑖𝑛 , elle favorise l'exploitation. La deuxième partie favorise l’exploration car elle 

augmente si l’erreur est plus grande. 

En maximisant le critère, on a la capacité de trouver le point qui a la plus grande 

probabilité d’améliorer la précision et de trouver le minimum simultanément. Le 

maximum est ajouté dans l’ensemble d’échantillon et puis le méta-modèle est reconstruit. 

Cette boucle continuera jusqu'à ce qu’un critère d'arrêt soit satisfait. 

EI est adapté à un problème déterministe sans contrainte, ainsi certains changements 

doivent être faits pour l’adapter à l’optimisation avec incertitude. Commençons par WCO 

qui consiste à résoudre un problème minimax : La méthode proposée est de trouver le 

pire cas, c’est à dire la plus petite valeur, d’EI dans l’ensemble d’incertitude U autour de d 

: 

 𝑊𝐶𝐸𝐼(𝒅) = 𝑚𝑖𝑛
𝝃 ∈𝑈(𝒅)

[𝐸𝐼(𝒅 + 𝝃)] (7) 

où 𝑈(𝒅) est l’ensemble d’incertitude autour de 𝒅. 

Pour les autres catégories d’optimisation avec incertitudes, un poids 𝛼 est ajouté afin 

de répartir l’attention d’EI sur l’exploitation et l’exploration.  

 𝑊𝐸𝐼(𝒅) = 𝛼[𝑓𝑚𝑖𝑛 − 𝑓(𝒅)]𝛷 (
𝑓𝑚𝑖𝑛−�̂�(𝒅)

�̂�(𝒅)
) + (1 − 𝛼)�̂�(𝒅)𝜙 (

𝑓𝑚𝑖𝑛−�̂�(𝒅)

�̂�(𝒅)
) (8) 

Il peut arriver que le domaine de sécurité soit trop petit et qu’aucun point dans 

l’échantillon initial ne respecte les contraintes. Dans ce cas, le critère ne marche pas car 

𝑓𝑚𝑖𝑛  est indéterminé ou trop petit. Pour éviter ce problème, un nouveau critère est 

proposé dans cette thèse : Modified Weighted EI (MWEI) ajoute un terme à (8) pour que 

sa valeur ne soit jamais nulle ou indéterminée.  

 𝑀𝑊𝐸𝐼 = 𝑊𝐸𝐼(𝒅) − 𝛼𝑓 (9) 

Comme il y a des contraintes dans le problème et qu’elles sont longues à calculer, 

l’utilisation des contraintes réelles prend trop de temps. En cohérence avec les 

recommandations dans la littérature et après quelques essais, les méta-modèles des 

contraintes sont utilisés directement. 
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Optimisation dans le pire cas 

Différentes stratégies sont proposées pour chaque catégorie d’optimisation avec 

incertitudes pour les adapter aux modèles lourds. Pour WCO, après une comparaison, le 

processus le plus efficace est présenté dans la Fig. 5a. Après le tirage d’un échantillon 

initial et la construction des méta-modèles, les nouveaux points sont ajoutés par 

maximisation du critère WCEI. Puis les méta-modèles sont reconstruits jusqu’à 

satisfaction d’un critère d’arrêt. 

 

Fig. 5. Les processus de WCO et RDO avec méta-modèle 

Optimisation robuste 

Pour la stratégie de RDO, on a besoin des moyennes et écart-type des objectifs et 

contraintes. Ainsi, il faut ajouter une autre couche de transformation pour laisser le critère 

s’adapter à la formulation.  

Une fois les méta-modèles 𝑓 et �̂� construits, on les utilise pour calculer les moments 

des fonctions objectif et contraintes. Ensuite, l’objectif et les contraintes robustes sont 

calculés avec ces moments et le critère MWEI est calculé. Le processus est présenté dans 

la Fig. 5b. 
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Optimisation fiable 

Après avoir adapté les trois types de méthodes aux méta-modèles, une comparaison a 

montré que la méthode séquentielle SORA est la plus efficace. Son processus est présenté 

dans la Fig. 6a. Comme elle sépare l’optimisation déterministe et l’analyse de fiabilité, il y 

a deux places possibles pour l’enrichissement. 

MWEI est utilisé pour la première itération d’optimisation déterministe car son but est 

de trouver l’optimum déterministe global. Pour les autres itérations, les méta-modèles 𝑓 

et �̂� sont utilisés directement sans enrichissement. 

Pour l’analyse de fiabilité, on ajoute un critère de proximité : Si l'optimum trouvé dans 

l’itération courante est loin des autres évaluations du modèle lourd, on utilise critère EI 

pour faire un enrichissement, sinon on suppose que le méta-modèle est suffisamment 

précis pour être utilisé directement. 

 

Fig. 6. Les processus de RBDO et RBRDO avec méta-modèle 
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Optimisation robuste et fiable 

Puisque RBRDO est une combinaison de RBDO et RDO, son processus est aussi un 

mélange de ces deux précédents.  Son processus est présenté dans la Fig. 6b. 

La fonction objectif robuste et les contraintes robustes sont calculées par les moments 

après que les méta-modèles 𝑓 et �̂� soient construits. Ensuite, le critère MWEI est utilisé 

pour l’optimisation déterministe lors de la première itération et EI est utilisé pour analyse 

de la fiabilité si le critère de proximité est inactif. 

Synthèse 

Un exemple simple est utilisé pour tester la performance des méthodes proposées. Les 

résultats montrent que le nombre d’évaluations est grandement diminué mais que 

l’utilisation d’un méta-modèle entraine une perte de précision. 

Un autre avantage des méta-modèles est de fournir des fonctions non-bruitées et leurs 

dérivées qui peuvent être utilisées avec des méthodes d’optimisation à base de gradient. 

Application en électromagnétique 

Afin de vérifier l’adéquation des méthodes proposées à la conception par optimisation 

des dispositifs électromagnétiques, le cas-test du transformateur monophasé introduit 

par Tuan-Vu TRAN est traité. 

Il possède certaines propriétés qui rendent son optimisation difficile : Il est 

multiphysique, les équations sont multimodales et implicites, il y a beaucoup de 

contraintes actives à l’optimum, et les variables ont des ordres de grandeur forts 

différents. 

Les phénomènes thermiques, magnétiques et électriques du transformateur sont 

modélisés par des modèles analytique et éléments finis. 

 

Fig. 7. Les modèles éléments finis et analytique du transformateur 
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Le problème d’optimisation déterministe est de minimiser la masse totale des parties 

actives (cuivre et fer). La formulation est présentée comme : 

 
𝑚𝑖𝑛

 
𝑚𝑡𝑜𝑡(𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2)

𝑠. à  𝒈(𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2) ≤ 0
 (10) 

𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2 sont les variables de conception, les quatre premières sont associées 

au circuit magnétique et les trois dernières se rapportent aux bobines primaire et 

secondaire. Les contraintes sont : 

 𝒈 =

[
 
 
 
 
 
 
𝑔1
𝑔2
𝑔3
𝑔4
𝑔5
𝑔6
𝑔7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑇𝑐𝑜 − 120°C
𝑇𝑖𝑟 − 100°C
𝐼μ

𝐼1
− 0.1

∆𝑉2

𝑉2
− 0.1

𝑓1 − 0.5
𝑓2 − 0.5
0.8 − 𝜂 ]

 
 
 
 
 
 
 
 

 (11) 

Pour vérifier l’adéquation et l'efficacité des méthodes proposées, on suppose que 

chaque variable de conception suit la loi normale avec une valeur moyenne à trouver et 

un écart-type valant 1% de la borne inférieure. La probabilité de défaillance cible est fixée 

à 0.13%. 

Modèle analytique  

Pour le modèle analytique, un modèle thermique nodal et un modèle magnéto-

électrique sont considérés. Puisque ce modèle est rapide et non-bruité, on utilise des 

méthodes sans méta-modèle. 

Parmi les méthodes qui avaient donné des bons résultats sur l’exemple simple, la 

moitié d’entre-elles sont en défaut sur le cas-test du transformateur. Les distances 

relatives entre ces solutions sont montrées dans le Tableau 4. 

Tableau 4. Distances relatives des solutions pour le modèle analytique 

Méthode Déterministe WCO RDO RBDO 

RBRDO 3.51% 2.83% 0.10% 0.08% 

RBDO 3.57% 2.76% 0.17% -- 

RDO 3.41% 2.92% -- -- 

WCO 6.32% -- -- -- 

 



32 
 

Les valeurs sont calculées par l’expression ci-dessous qui présente le ratio de la 

distance entre les solutions sur la longueur de la diagonale de l’espace de recherche : 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑(
𝑑1(𝑖)−𝑑2(𝑖)

𝑑𝑈(𝑖)−𝑑𝐿(𝑖)
)
2

 (12) 

On peut voir que les optima de RDO, RBDO et RBRDO sont similaires et distants de ceux 

de WCO et du problème déterministe. La distance plus petite est entre RBDO et RBRDO et 

la plus grande est entre WCO et déterministe. Ces résultats soulignent l’importance de 

considérer les incertitudes lors de la conception par optimisation. 

Modèle éléments finis  

Le modèle éléments finis comprend un 8ième du transformateur en raison des 

symétries. Le maillage contient environ quarante-trois mille nœuds et deux cent quatre-

vingt mille éléments. Puisque le temps de calcul du modèle éléments finis est supérieur à 

dix minutes, on utilise des méta-modèles pour mener des optimisations en un temps 

raisonnable. 

Un échantillon initial de 7000 points est utilisé pour construite les méta-modèles de 

l’objectif et des contraintes. Cette taille importante s’explique par le nombre de variables, 

les fonctions multimodales, et le problème fortement contraint qui induit un espace de 

faisabilité petit et éventuellement discontinu. 

Les valeurs optimales trouvées par les différentes méthodes sont toujours distinctes 

de celles du modèle analytique car ce dernier sous-estime les contraintes. Les méthodes 

avec méta-modèle réduisent le nombre d'évaluations. Les distances relatives entre les 

solutions avec le modèle éléments finis sont montrées ci-dessous : 

Tableau 5. Distances relatives des solutions avec le modèle éléments finis 

Méthode Déterministe WCO RDO RBDO 

RBRDO 4.83% 8.29% 4.29% 4.68% 

RBDO 7.36% 11.81% 7.45% -- 

RDO 1.41% 4.98% -- -- 

WCO 5.33% -- -- -- 

 

On peut voir que les distances sont différentes de celles avec le modèle analytique. Les 

optima avec incertitude sont éloignés les uns des autres. La distance la plus grande est 

entre RBDO et WCO. Cette fois, les résultats de RDO et déterministe sont proches. C’est en 

partie une conséquence de l’imprécision du méta-modèle. 
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Conclusion 
Dans cette thèse, une comparaison des différentes catégories d’optimisation avec 

incertitudes est faite pour mettre en évidence les plus efficaces. Des nouveaux critères 

d’enrichissement du méta-modèle sont proposés pour améliorer la précision et réduire le 

nombre d’évaluations. L’utilisation conjointe des méthodes d’optimisation avec 

incertitude et des méta-modèles permet de gagner du temps lors de l’optimisation avec 

des modèles lourds. Enfin, ces méthodes sont appliquées avec succès dans domaine 

électromagnétique pour l’optimisation d’un transformateur monophasé. 

Mais il y a encore beaucoup de points à améliorer. Premièrement, pour les critères 

d’enrichissement, on ajoute un seul échantillon après chaque itération, ce qui n’exploite 

pas le calcul parallèle. Si on ajoute plusieurs points à chaque itération, la précision du 

méta-modèle sera plus vite améliorée. Deuxièmement, pour le modèle éléments finis du 

transformateur, l’échantillon initial  représente plus de 90% des évaluations totales alors 

que l’enrichissement représente moins de 10%. Cette répartition pourrait être plus 

équilibrée par un échantillon initial plus approprié. Troisièmement, les incertitudes sur 

les variables ont toujours été considérées indépendantes et suivant une distribution 

normale. Cependant, dans la vie réelle, ces hypothèses sont rarement vérifiées et il 

faudrait faire les changements appropriés dans les méthodes afin de pouvoir les appliquer 

plus largement. 
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General Introduction 

Over the past few decades, as the high-speed digital computers made implementation 

of the optimization and simulation procedures possible, classical optimization methods 

has been applied successfully in all engineering fields, including electromagnetic 

engineering. Designs of complex electromagnetic devices can be modelled and the optima 

which can reduce the cost or improve the performance most can be found through 

simulation.  

However, most of these methods are deterministic as they try to find the global 

optimum under the hypothesis that all input parameters are deterministic and no 

uncertainty is involved into the manufacturing process. The influence of this hypothesis 

may be insignificant for simple products or those having great tolerance, but for 

electromagnetic devices which are complicated and require a high accuracy, this 

assumption may cause undesirable consequences. In real conditions, many variables of 

the design problems are random and uncontrollable, the unexpected uncertainties will 

lead to a bias of performances, and in such cases, the optimum obtained by a deterministic 

design optimization (DDO) may violate the constraints unacceptably. If this optimum is 

kept, it may result in performance degradation or even worse in some unsafe situation.  

Moreover, as all optimization methods rely on repeating evaluations of the models 

(Moustapha, Sudret, Bourinet, & Guillaume, 2016), the computational burden becomes 

insufferable if the model is too heavy to evaluate. So that the applications of deterministic 

models and deterministic optimizations still have great limitations in electromagnetic 

engineering.  

In order to avoid the unexpected consequences resulted from uncertainties and to deal 

with complicate devices or systems, two main difficulties need to be faced. The first one 

is to get an optimum in design optimization that can always respect the constraints even 

if the uncertainties are taken into account. The second one is to reduce the computational 

cost as much as possible for high precision models especially when finite element analysis 

is used. 

Over the last couple of decades, engineers and scientists invented many approaches to 

deal with the random input parameters and applied them into design optimization of 

electromagnetic devices. These approaches are called stochastic design optimization 

(SDO) (Yu, 2011), and they can be generally divided into four categories. 

Worst-case optimization (WCO) considers all the possible results around the design 

point with a given maximum deviation, and try to make sure that the worst-case in this 

neighbourhood will not violate constraints (Parkinson, Sorensen, & Pourhassan, 1993). 

This approach and its variations has been used successfully in the superconducting 

magnetic energy storage system by (Ren, Pham, & Koh, 2013; Steiner, Weber, & Magele, 
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2004), and in a magnetic resonance imagining device by (Chiariello, Formisano, Martone, 

& Pizzo, 2015). 

Robust design optimization (RDO) aims at making the optimum performance less 

sensitive to uncertainties. In other word, the main target is to reduce the variability of the 

system performance, which is characterized most often by its standard deviation (Kang, 

2005). This method is widely used in electromagnetic devices like electric motor 

(Picheral, 2013) and electromagnetic actuator (Neubert, Kamusella, & Pham, 2010) 

because of its simplicity of operation and its ability to find solutions that compromise 

between the mean and variance of the objective. 

Reliability-based design optimization (RBDO) focuses on finding an optimum with a 

given maximum probability of failure which the design must at least meet (Dersjö, 2012). 

RBDO is the most studied method among all the four categories especially in recent years, 

with the help of probabilities, the designers could quantify the violation of constraints and 

provide an improved design with a higher level of confidence. Aerospace and design of 

vehicles are two of the areas that stimulate this type of optimization (Park, Lee, Chung, & 

Behdinan, 2015). 

Reliability-based robust design optimization (RBRDO) is a method which takes both 

RBDO and RDO as the research targets (Du & Chen, 1999). In this approach, the robust 

design is obtained under uncertain constraints quantified by the associated probability of 

failure. It is the latest method and the applications have not yet spread widely but as a 

method which absorb both features of RDO and RBDO, many engineers show interest in 

its applications, and recently (Zhang, 2015) used it for vehicle components. 

Each category has various approaches using different manners to achieve their 

purpose and with these categories of methods, uncertainties in design parameters could 

be taken into account and get an optimum more robust and/or more feasible. That means 

the optimum varies little with the uncertainties or has less probabilities to violate the 

constraints. 

Although stochastic strategies are able to find the desired region with quite good 

probability or small variance, they could not deal with the fine models which have high 

computational cost, like finite element models of electromagnetic devices. It is because 

that evaluation of all points during optimization process is insufferable for time 

consuming black-box models. What is more serious is that the former SDO methods 

aggravate this problem since they change the problems to more complicate ones. 

To handle this problem, surrogate model is commonly used to represent the compute-

intensive simulation model. The main idea of surrogate model or so-called meta-model is 

to determine a continuous function of a set of design variables from a limited amount of 

available data, so that the outputs of other design points can be predicted rapidly by this 

continuous function instead of the heavy model itself.  
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Various approaches to build a meta-model have been proposed in last decades, such as 

polynomial regression, artificial neural network, kriging and so on. As one of the most 

widely used approach, kriging meta-model will be used in this manuscript. The main idea 

of kriging is that the points close to samples should get more weight in the prediction to 

improve the estimate (Lichtenstern, 2013), it is possible to use the knowledge of only a 

few samples to approach complex functions. 

The most important advantage of meta-model is that it is fast to predict an estimate, so 

that it can be used in optimization algorithms to replace the time consuming evaluation 

on heavy models. A straightforward way to combine the meta-model with optimization 

methods is putting them in series. That means first we choose some design point as 

samples to evaluate, then a meta-model is built with these samples and responses, at last 

optimization methods can be applied on the meta-model directly.  

However, with this process, the global optimum may not be found if the number of 

samples are too small since the models are not accurate globally. Therefore, in order to 

find a more accurate solution, a type of method called adaptive meta-model based 

optimization was proposed. The most representative one is efficient global optimization 

(EGO) (Jones, Schonlau, & Welch, 1998) that searches the optimum and refines the meta-

model in parallel by adding new samples in the promising region with an infill searching 

criterion (ISC). The goal of ISC is to choose additional points that offer quick convergence 

to the global optimum while fitting the exact model over the full range of inputs at the 

same time (Liu, Han, & Song, 2012). 

Many ISCs were proposed, nevertheless, most of them can be applied only with DDO 

and do not take any uncertainty into account. The methods combining the SDO with 

adaptive meta-models are still a relatively new subject. This limits the applications of SDO 

on heavy models in electrical engineering and many other industry field. 

So as to expand the application range of SDO, this thesis focuses on adapting different 

categories of SDO methods with adaptive meta-models for electromagnetic devices. As the 

formulations of SDO methods are diverse, appropriate ISC and process are not the same. 

Various approaches are analyzed and the most effective or universal one is selected in 

each SDO category, then in order to find out the suitable processes for adaptive meta-

models, different strategies including the choice of the ISC and the positioning of sample 

enrichment in the optimization process are investigated in this manuscript for each 

category of SDO approaches. 

This thesis contains four chapters: 

Chapter 1 involves the presentation of the aforementioned four SDO categories for fast 

models. In each category, different manners are introduced in details and a simple 

mathematic example is used to compare them. Then, a synthesis is made to show their 

respective merits and drawbacks. 
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Chapter 2 first introduces the kriging principles, then EGO and the main ISC in 

application are presented also. The next parts propose some strategies to combine the 

different SDO with adaptive kriging models to handle the heavy models. They describe 

which ISC should be used and where the enrichment of samples should be placed. The 

same mathematic example as in Chapter 1 is also used here to verify the feasibility of the 

proposed methods and to select the most effective one for each category of SDO. 

In Chapter 3, a typically electromagnetic device that is a safety transformer is 

introduced as a real application to verify the conclusions drawn with the mathematical 

example. Analytic model and finite element model are both presented and a comparison 

is made between them. Since analytic model is quick, it is suitable for the methods for fast 

models. On the other hand, the finite element model is tested with methods for heavy 

models proposed in Chapter 2. Then a more general conclusion is made on this 

electromagnetic device optimization. 

The last chapter gives conclusions of this work and some prospects for future works. 
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Chapter 1: Methods adapted to fast 

models 

1 State of the art 
Generally speaking, optimization problems contain the input variables, one or more 

objective functions and the constraints which should be respected as outputs. The 

formulation of this classic type of optimization is: 

 

min
𝒅∈𝑆

𝑓(𝒅)

𝑠. 𝑡.  𝒈(𝒅) ≤ 0

𝒉(𝒅) = 0

 (1.1) 

where 𝒅  represents the input variables which can be a vector, the search space 𝑆  is 

defined by different types of 𝒅: if the variables are continuous 𝑆: 𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈, if they are 

discrete 𝑆 = {𝑎, 𝑏, 𝑐, … }. 𝑓(𝒅) is the objective or cost function, 𝒈(𝒅) and 𝒉(𝒅) denote the 

inequality constraints and equality constraints respectively. As one equality constraint 

can be also written with two inequality constraints as −𝜀 ≤ 𝒉(𝒅) ≤ 𝜀 where 𝜀 is a small 

positive tolerance, sometimes only inequality constraints are used to express the 

problem. 

This type of optimization is called deterministic optimization, however the solutions 

found by this classic type of optimization may not be very interesting in practice for 

electromagnetic problems, as they do not take into account the uncertainties which are 

inevitable in industry or other real applications.  

The unavoidable uncertainties which can influence the output values are of multiple 

origins (Beyer & Sendhoff, 2007), including uncertainties due to environmental 

conditions, inaccuracy on variables, measurement uncertainties on the output of the 

system. Sometimes a small input variability can lead to a large variability on the output, 

so that considering the uncertainties during optimization is important to improve the 

feasibility of the obtained solution. 

The uncertainties can be reduced but never eradicated completely, for that reason 

ways to decrease the influence of uncertainties with existing techniques is quite worth 

studying. Especially in applications of engineering designs, less influence signifies less 

cost or more stable performance, which are quite valuable in real world. 

With technology evolved in last decades, various methods are proposed to tackle the 

effects of input uncertainties for design optimization problems. They can be roughly 

separated into four categories: 
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 Worst-Case Optimization (WCO) 

 Robust Design Optimization (RDO) 

 Reliability-Based Design Optimization (RBDO) 

 Reliability-Based Robust Design Optimization (RBRDO) 

For the first category, WCO, it is a non-probabilistic approach that is based on minimax 

problem formulation. There is no need to determine the distributions of objective 

function and constraints. The three others are probabilistic approaches that quantify the 

uncertainty of quantities of interest by considering inputs and outputs as random 

variables. RDO should use the distribution of inputs to calculate the statistical moments 

of objective function and constraints (mean and standard deviation) that are used to 

create robust objective function and constraints. It should be noticed that only the 

moments can be calculated by uncertainty propagation techniques, the distribution of 

objective and constraints could be known only if the model is linear. RBDO needs to 

analyse the reliability and calculate the probabilities of failure as new constraints. 

This chapter will first introduce these disparate categories of optimization with 

different formulations and then numerical investigation on these methods will be 

presented. 

1.1 Worst Case Optimization (WCO) 

A widely used method to evaluate the reliability of solution is the worst case 

optimization. As shown in Fig. 1.1,  𝐴, 𝐵, 𝐶  are the design points, the grey rectangles 

around them represent the possible performance caused by uncertainties. A small 

disturbance act on the classical optimum 𝐴 can lead to an unfeasible solution 𝐴′.  

 

Fig. 1.1. Classical optimum, worst case optimum and reliable design (Song, Li, Rotaru 

& Sykulski , 2014) 
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Therefore, the principle of the worst-case optimization technique is that we consider 

not only the exact design point but also a region around this point as an influence of 

uncertainties. If any point in this region might enter the unfeasible area, this design will 

be abandoned. On other words, a design will be chosen as an optimum only if the worst 

case point in the region we consider do not violate the constraints, like the design 𝐵 in Fig. 

1.1. The uncertainty set can be defined as: 

 𝑈(𝒅) = {𝝃 ∈ ℝ𝑝|𝒅 − 𝑘𝝈 ≤ 𝝃 ≤ 𝒅 + 𝑘𝝈} (1.2) 

where 𝝈 is the standard deviation of uncertain variables with normal distribution, 𝑘  is 

determined according to the confidence level (Ren, Pham, & Koh, 2013) which signifies 

the probability that a random variable lies within the confidence interval of an estimate. 

The value of 𝑘  is decided by designers, usually chosen between 1 to 6, larger value 

corresponds to higher probability, for example, 𝑘 = 2 means that 95.45% of cases should 

fall within properly-calculated intervals, when 𝑘 = 3 , it increases to 99.73% . 𝑝  is the 

dimension of input variables. For uncertain variables following uniform law, 𝝈  is the 

maximum deviation and k is one. 

Another model of uncertainty set is a hyper-ellipsoid that can be suitable for 

uncorrelated Gaussian uncertainties. In this case, the uncertainties are defined as: 

 𝑈(𝒅) = {𝝃 ∈ ℝ𝑝|(𝝃 − 𝒅)𝑇(𝑄−1)2(𝝃 − 𝒅) ≤ 1} (1.3) 

where 𝑄 = 𝑘 diag(𝝈𝑖)  (Steiner, Weber, & Magele, 2004). For the sake of simplicity, the 

model of hyper-rectangle is chosen as the uncertainty set in this manuscript. 

 

Fig. 1.2. Different uncertainty set (Steiner et al., 2004) 

For the purpose of finding the worst scenario considering uncertainties, the WCO 

method may be expressed as a minimax problem like: 
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min
𝒅∈𝑆

𝑓𝑤(𝒅)

𝑠. 𝑡.  𝒈𝑤(𝒅) ≤ 0

with      
𝑓𝑤(𝒅) = max

𝝃∈𝑈(𝒅)
𝑓(𝝃)

𝒈𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

𝒈(𝝃)

 (1.4) 

That means the original values of the design variables 𝒅 for the objective function and 

the constraint functions are substituted by the worst values. The process of WCO method 

is shown in the Fig 1.3. 

 
Fig. 1.3. Process of Worst Case Optimization 

However, as a minimax optimization, there is one optimization loop nested in another. 

This time-consuming process slows down the efficiency vastly because the sub-problem 

has to be solved for every point in the design space found by optimization in each iteration 

of optimization. In order to reduce the computational burden, (Sundaresan, Ishii, & 

Houser, 1995) propose a technique to use the vertex discretization to replace the inner 

maximal optimization. That means the infinite uncertainty set 𝑈(𝒅) is replaced with the 

finite set 𝑈𝑣, which consists of only the vertices of the initial 𝑈(𝒅).  

 𝑈𝑣 = {𝒅 + 𝑘𝝈; 𝒅 − 𝑘𝝈} (1.5) 

This method is based on a first order Taylor expansion so the vertices are likely to 

exhibit the worst values in the region 𝑈(𝒅) because they are the farthest points from the 

design point 𝒅, i.e. the center. Therefore, the initial inner optimization whose aim is to find 

the worst value in the region 𝑈(𝒅) by solving an optimization problem is substituted by 

the calculation of the vertex value. This discretization technique can be expanded to 

hyper-rectangular uncertainty sets with 𝑝 variables and 2𝑝 vertices to evaluate. As shown 

in Fig. 1.4, the 8 red points present the vertices for a 3 dimension hyper-rectangular. 
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Fig. 1.4. A hyper-rectangular uncertainty set and the corner points for a three-

dimensional variables 

Although this method avoid a nested optimization problem, 2𝑝 evaluations is still a big 

disadvantage. Its exponential complexity is a great restriction especially for higher 

dimensional problems. To reduce the number of evaluations, approximation based WCO 

methods are proposed. Two representative methods are presented hereafter. 

1.1.1 Worst-vertex-based WCO 

A worst-vertex-based WCO (WWCO) is proposed by (Steiner et al., 2004). This method 

aims to observe the values of the bounds of 𝑈(𝒅) in each dimension and predict the worst 

vertex value.  

 

Fig. 1.5. A hyper-rectangular uncertainty set and the bound points for a three-

dimensional variables 
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As shown in Fig. 1.5, the 6 intersections of each two dashed lines on faces are the 

bounds in each dimension, so that this method needs to evaluate 2𝑝  points and it is 

obvious that the number of evaluations for this method will be much less than the one 

requires by the method based on the calculation at all the vertices when the dimension 

increases. 

The principle of WWCO is to determine the directions of ascent in which the values of 

objective function and constraints increase (Alotto, Magele, Renhart, Weber, & Steiner, 

2003). As in Fig 1.6, the curves are contours of • (𝒅), white circle points at the upper and 

lower boundaries of the uncertainty set along each direction 𝑖  are evaluated. The 

difference between each two evaluated values at the same dimension shows the 

directions of ascent in this dimension. It is assumed that the worst vertex 𝒅𝑤,• occurs in 

the direction where the higher value was detected. 

 𝒅𝑤,• = 𝒅+ {

𝑠𝑖𝑔𝑛(• (𝒅 + 𝑘𝜎1) −• (𝒅 − 𝑘𝜎1)) ∙ 𝑘𝜎1
⋮

𝑠𝑖𝑔𝑛 (• (𝒅 + 𝑘𝜎𝑝) −• (𝒅 − 𝑘𝜎𝑝)) ∙ 𝑘𝜎𝑝

} (1.6) 

where 𝑝 is the dimension of variables, • can be the objective function 𝑓 or constraints 𝒈. 

 
Fig. 1.6. Worst-Vertex-based WCO (Z. Ren et al., 2013) 

As the directions of ascent may not always be the same for the objective function and 

each constraint, so the worst vertex should also be calculated for every constraint. 
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Therefore, the total number of evaluations is 2𝑝 +𝑚 + 1  for a design point in outer 

optimization loop with 𝑚 is the number of constraints. 

According to these worst vertices, the worst-case objective and constraints can be 

approximated as: 

 
𝑚𝑎𝑥
𝝃∈𝑈(𝒅)

𝑓(𝝃) ≅ 𝑓(𝒅𝑤,𝑓)

𝑚𝑎𝑥
𝝃∈𝑈(𝒅)

𝒈(𝝃) ≅ 𝒈(𝒅𝑤,𝑔)
 (1.7) 

So, the formulation is changed into: 

 
𝑚𝑖𝑛
𝒅∈𝑆

𝑓(𝒅𝑤,𝑓)

𝑠. 𝑡.    𝒈(𝒅𝑤,𝑔) ≤ 0
 (1.8) 

1.1.2 Gradient-based WCO 

Another type of method to reduce the computational burden for WCO is gradient-based 

method (Z. Ren et al., 2013; Z. Ren, Pham, Song, Kim, & Koh, 2011). These methods intend 

to use Taylor series expansion in the neighborhood of the mean value 𝒅, if the objective 

function and constraints are differentiable. 

The expansion is: 

 • (𝝃) =• (𝒅) + ∇ • (𝒅) ∙ (𝝃 − 𝒅) +
1

2
(𝝃 − 𝒅)𝑇𝐻(𝒅)(𝝃 − 𝒅) + ⋯  ∀𝝃 ∈ 𝑈(𝒅) (1.9) 

where ∇ • (𝒅)  is the gradient and 𝐻(𝒅)  is the Hessian matrix of • (𝒅) , •  can be the 

objective function 𝑓 or constraints 𝒈. 

For first order gradient-based WCO (GWCO), the higher order terms are neglected and 

with the help of Cauchy–Schwarz inequality, the objective function values in the region 

around 𝒙 can be written as: 

• (𝝃) ≈• (𝒅) + ∇ • (𝒅) ∙ (𝝃 − 𝒅) ≤• (𝒅) + ‖∇ • (𝒅)‖ ∙ ‖𝝃 − 𝒅‖ 

 • (𝝃) ≤• (𝒅) + ‖∇ • (𝒅)‖ ∙ max
𝝃∈𝑈(𝒅)

‖𝝃 − 𝒅‖   ∀𝝃 ∈ 𝑈(𝒅) (1.10) 

So the boundary in right side in (1.10) is treated as the worst case for 𝑓(𝒅). Same 

approximation can be introduced into constraints and the initial worst-case problem 

turns to be an approximation with gradient information: 

 

min
𝒅∈𝑆

𝑓𝑤(𝒅)

𝑠. 𝑡.  𝒈𝑤(𝒅) ≤ 0

𝑤𝑖𝑡ℎ      
𝑓𝑤(𝒅) = 𝑓(𝒅) + ‖∇𝑓(𝒅)‖ ∙ max

𝝃∈𝑈(𝒅)
‖𝝃 − 𝒅‖

𝒈𝑤(𝒅) = 𝒈(𝒅) + ‖∇𝒈(𝒅)‖ ∙ max
𝝃∈𝑈(𝒅)

‖𝝃 − 𝒅‖

 (1.11) 

The principle of second order gradient-based WCO is almost the same, objective 

function and constraints are approximated with a second order Taylor expansion: 
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 𝑓𝑠𝑜(𝝃) ≈ 𝑓(𝒅) + ∇𝑓(𝒅) ∙ (𝝃 − 𝒅) +
1

2
(𝝃 − 𝒅)𝑇𝐻(𝒅)(𝝃 − 𝒅) (1.12) 

Suppose that the worst performance  𝑓𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

(𝑓𝑠𝑜(𝝃)) , therefore the second 

order WCO is formulated as: 

 
𝑚𝑖𝑛
𝒅∈𝑆

𝑓𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

(𝑓𝑠𝑜(𝝃))

𝑠. 𝑡.    𝒈𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

(𝒈𝑠𝑜(𝝃)) ≤ 0
 (1.13) 

Normally in engineering applications, it is hard to calculate the derivatives of orders 

higher than one, for that reason, the following parts will only consider the first order 

gradient-based WCO. 

1.2 Robust Design Optimization (RDO) 

It is evident that deterministic optimization without considering the uncertainties of 

input parameters will find a global optimum that lies on one or several constraints 

boundaries in most cases. With a small deviation on the solution, this one could easily 

violate one or more constraints and fall into the failure domain. Moreover, if the global 

optimum lies on a very narrow valley of objective function, even a slight variation in the 

variables could result in a significant change for the performance. In order to reduce the 

impact of disturbance and improve the robustness, RDO method is proposed. 

Within the RDO process, the statistical variability of the design parameter is considered 

and the original deterministic input parameter 𝒅  is replaced by a random input 

parameter 𝑿. For the sake of simplicity and without loss of generality, in this manuscript 

all the input variables with uncertainty follow a Gaussian law where the mean value is 

denoted 𝒅 and the standard deviation is denoted 𝝈 which is considered constant. 

Optimized design within the sigma level ±𝑘𝝈 is characterized as robust design. The 

objective of the RDO is to find a design with a minimal variance of the model responses 

around the mean values of the design parameters (Roos, Adam, & Bucher, 2006). As 

shown in Fig. 1.7, 𝒅𝑚𝑖𝑛  is the global optimum which can be obtained by deterministic 

optimization. However, the variance between ±𝑘𝝈 around this point in the input variable 

space result in larger variance ∆𝑦 in the output variable space than the one around the 

local optimum 𝒅𝑚𝑖𝑛
′ . Thus, 𝒅𝑚𝑖𝑛

′  is more robust than 𝒅𝑚𝑖𝑛. 
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Fig. 1.7. Deterministic optimum and robust optimum 

Therefore, a new robust problem involves not only the objective function itself but also 

the variance of performance. So that it would be reformulated as: 

 

{
 

 min
𝒅
𝑓𝑟 (𝜇𝑓(𝒅), 𝜎𝑓(𝒅))

𝑠. 𝑡.   𝒈𝒓 (𝝁𝒈(𝒅), 𝝈𝒈(𝒅)) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.14) 

where 𝑓𝑟  and 𝑔𝑟  are the new robust objective function and constraints which normally 

contains both the mean 𝜇𝑓(𝒅), 𝝁𝒈(𝒅) and standard deviation 𝜎𝑓(𝒅), 𝝈𝒈(𝒅) of initial ones. 

Besides, the lower bound and upper bound of the robust problem are modified also. In 

deterministic problems, the constraint of bound is 𝒅𝐿 ≤ 𝒅 ≤ 𝒅𝑈 , but when we consider 

uncertainties and the input variables follow the normal law 𝑿~𝒩(𝒅, 𝝈2), in order to make 

sure the value of 𝑿 is in the range, new bounds should be as 𝒅 − 𝑘𝝈 ≥ 𝒅𝐿 and 𝒅 + 𝑘𝝈 ≥

𝒅𝑈 , where 𝑘  is the same confidence level as in WCO. To find the minimal variance of 

objective and constraints, their means 𝜇𝑓 , 𝜇𝑔 and standards deviations 𝜎𝑓 , 𝜎𝑔  should be 

calculated first. They may be computed as the following equations (Paiva, 2010). 

 {
𝜇𝑓(𝒅) = ∫ …∫ 𝑓(𝑡)𝑓𝑋(𝑡)𝑑𝑡

+∞

−∞

+∞

−∞

𝜎𝑓(𝒅) = ∫ …∫ [𝑓(𝑡) − 𝜇𝑓(𝑑)]
2
𝑓𝑋(𝑡)𝑑𝑡

+∞

−∞

+∞

−∞

 (1.15) 

where 𝑓 represents the initial function objective, 𝑡 has the same dimension with 𝑿, 𝑓𝑋 is 

the joint probability density function of 𝑿 . The mean and standard deviation of 

constraints 𝑔 can be calculated in the same way. However, the analytical evaluation of the 

integrals in (1.15) seems impossible to compute in most practical problems, for that 

reason, some numerical methods are proposed to obtain a quite good approximate result 

of these moments.  
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The techniques can be separated roughly into three groups, the first is the simulation 

methods, and the most general method in this group is the well-established Monte Carlo 

simulation with a huge quantity of samples. The second group is the perturbation 

methods and the most typical one is Taylor based Method of Moments (Padulo, Forth, & 

Guenov, 2008). The last one is approximation methods for instance by using chaos 

polynomials. The former two type of methods will be used in this manuscript and the 

following sections will show more details of the mentioned typical methods: Monte Carlo 

simulation and Taylor based Method of Moments. 

1.2.1 Monte Carlo simulation 

Monte Carlo method is a simulation method commonly used in particle physics, or it 

can also introduce a statistical approach to assess risk in a finance. The purpose of the 

Monte Carlo simulation is to estimate quantities like mean, PDF… of the output 

parameters when the input parameters of the model are random variables. It is a 

numerical method for statistical simulation that uses sequences of random numbers to 

perform the simulation. 

The approach choose 𝑛 values for each input parameter 𝑋(𝑖)(𝑖 = 1,… , 𝑛) randomly (𝑛 

should be very large) depend on its probability distribution (Amelin & Kungliga tekniska 

högskolan (Stockholm), 2004). The model is then computed for each sample set, that 

means evaluated 𝑛 times and then for each output parameter a vector with 𝑛 values is 

obtained. With these values, quantities of interest can be estimated like the moments of 

the output parameters. 

A simple example is used here to describe the principle of Monte Carlo method. Given 

an integral: 

 ∫ 𝐽(𝑥)𝑑𝑥
 

[𝑑𝐿,𝑑𝑈] 
 (1.16) 

where 𝐽(𝑥)  is a real integrable function and X is a random variable within the 

interval [𝑑𝐿 , 𝑑𝑈]. Before presenting the distribution (mean and standard deviation) of the 

output of this integral, some fundamental laws should be introduced. 

The first one is the law of large numbers: 

If 𝑋(1), 𝑋(2), … , 𝑋(𝑛) are independent and identically distributed (iid), the expectation 

exist and 𝐸[𝑋(1)] = 𝐸[𝑋(2)] = ⋯ = 𝐸[𝑋(𝑛)] = 𝜇, then 

 𝑃 (𝑙𝑖𝑚
𝑛→∞

�̅�𝑛 = 𝜇) = 1 (1.17) 

where 

 �̅�𝑛 =
1

𝑛
∑ 𝑋(𝑖)𝑛
𝑖=1  (1.18) 
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That means if sample number 𝑛 goes to infinity, the probability that the average of the 

observations is equal to the expected value will 1, in this condition �̅�𝑛 can be used as an 

estimator of 𝐸[𝑋]. 

The second law is the central limit theorem: 

Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) be a sequence of random variables that are iid, and 𝐸(𝑋2) < ∞ 

exist with 𝐸(𝑌) = 𝜇𝑌 and the variance is 𝜎𝑌
2 for 𝑖 = 1,2, …, it is noted that 

 𝑆𝑛 =
1

𝑛
∑ 𝑥(𝑖)𝑛
𝑖=1  (1.19) 

also, 𝑥(𝑖)  is a realisation of 𝑋(𝑖) . The empirical mean 𝑆𝑛  has a normal distribution 

𝒩(𝜇𝑋, 𝜎𝑋
2 𝑛⁄ ) if 𝑛 is large enough. 

With the two fundamental laws, the distribution of output and also the rate of 

convergence can be obtained. Note that in the example above, the mean and standard 

deviation can be calculated by the following equation: 

 {
𝜇𝐽 ≈

1

𝑛
∑ 𝐽(𝑥(𝑖))𝑛
𝑖=1

𝜎𝐽
2 ≈

1

𝑛−1
∑ (𝐽(𝑥(𝑖)) − 𝜇𝐽)

2𝑛
𝑖=1

 (1.20) 

where 𝐽(𝑥(𝑖))  is the 𝑖 -th value of the output parameters, 𝜇𝐽  and 𝜎𝐽  are the mean and 

standard deviation of the output parameters respectively. 

However, the major shortcoming of this approach is its vast need of computational 

resources due to a poor convergence rate (~1/n1/2) so requiring a huge number of runs, 

and these may cost huge time especially for heavy engineering designs.  

1.2.2 Taylor Based Method of Moments 

Another common approach is based on a Taylor expansion to propagate the 

uncertainty from input parameters 𝑿~𝒩(𝒅, 𝝈2) to output parameters 𝐽(𝑿).  

This method consist in relating the moments of output parameters analytically as a 

function of the moments of the input parameters (Lei, Lima-Filho, Styblinski, & Singh, 

1998). The expressions of the output moments are based on reformulations of the model 

equations using first or second order Taylor expansions. 

Given 𝑝 independent random variables, the first order Taylor expansion for a function 

𝑦 = 𝐽(𝑥1, 𝑥2, … , 𝑥𝑝) around the point 𝜇𝑋 = [𝜇𝑋1 , 𝜇𝑋2 , … , 𝜇𝑋𝑝] which presents the mean of 

input 𝑋 is as follows: 

 �̃� = 𝐽(𝜇𝑋) + ∑
𝜕𝐽(𝜇𝑋)

𝜕𝑋𝑖
(𝑥𝑖 − 𝜇𝑋𝑖)

𝑝
𝑖=1  (1.21) 

where 𝜕𝐽 𝜕𝑥𝑖⁄  is the partial derivative of the function 𝐽 with respect to the variables 𝑥𝑖. 
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With the help of (1.21), the expressions for the mean and standard deviation of 𝐽(𝑋) 

can be expressed as: 

 {
�̂�𝐽 = 𝐽(𝜇𝑋)

�̂�𝐽
2 = ∑ (

𝜕𝐽(𝜇𝑋)

𝜕𝑥𝑖
)
2

𝜎𝑋𝑖
2𝑝

𝑖=1

 (1.22) 

The first order Taylor expansion is a linear approximation that is more convenient and 

only use the first derivative information. However, it is a bit rough when sometimes 

performance linear approximation is not sufficiently accurate. To solve this problem, a 

quadratic approximation – second order Taylor expansion is proposed. 

As previously, the second order development is expressed as follows: 

 �̃� = 𝐽(𝜇𝑋) + ∑
𝜕𝐽(𝜇𝑋)

𝜕𝑥𝑖
(𝑥𝑖 − 𝜇𝑋𝑖)

𝑛
𝑖=1 +

1

2
∑ ∑

𝜕2𝐽(𝜇𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥𝑖 − 𝜇𝑋𝑖)

𝑛
𝑗=1

𝑛
𝑖=1 (𝑥𝑗 − 𝜇𝑋𝑗) (1.23) 

where 𝜕2𝐽 (𝜕𝑥𝑖𝜕𝑥𝑗)⁄  is the second partial derivative of the function 𝐽 with respect to the 

variables  𝑥𝑖  and 𝑥𝑗 . 

The moments can be calculated as (Padulo et al., 2008): 

 {

 �̂�𝐽 = 𝐽(𝜇𝑋) +
1

2
∑

𝜕2𝐽(𝜇𝑋)

𝜕𝑥𝑖
2

𝑛
𝑖=1 𝜎𝑋𝑖

2

�̂�𝐽
2 = ∑ (

𝜕𝐽(𝜇𝑋)

𝜕𝑥𝑖
)
2

𝜎𝑋𝑖
2𝑛

𝑖=1 +
1

2
∑ (

𝜕2𝐽(𝜇𝑋)

𝜕𝑥𝑖
2 )

2

𝜎𝑋𝑖
4𝑛

𝑖=1 + ∑ (
𝜕2𝐽(𝜇𝑋)

𝜕𝑥𝑖𝜕𝑥𝑗
)
2

𝜎𝑋𝑖
2 𝜎𝑋𝑗

2𝑛
𝑖<𝑗

 (1.24) 

Engineering problems involve often nonlinear models, which suggests that the 

quadratic approximation should be more appropriate for calculating the moments of 

output (Glancy, 1999). However, it uses more information like second order partial 

derivatives than the linear approximation and it is usually quite difficult to calculate (Z. 

Ren et al., 2013) and time-consuming so that the first order Taylor based method is 

applied in practice in engineering design and especially for the finite element models. 

1.2.3 Robust formulations 

After the propagation of uncertainty, the moments of outputs are obtained and it is 

possible to express a robust formulation based on these moments. There are various 

formulations expressed with the mean and standard deviation of objective and/or 

constraints. The simplest formulation uses the means of objective function 𝜇𝑓(𝒅) and 

constraints 𝜇𝑔(𝒅) to replace the initial ones (Sundaresan, Ishii & Houser, 1992): 

 

𝑚𝑖𝑛
𝒅
𝜇𝑓(𝒅)

𝑠. 𝑡.  𝜇𝑔(𝒅) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.25) 
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However, this formulation does not take the variance of inputs into account and the 

robustness cannot be assessed. For that reason, (Fonseca, 2003) adds the standard 

deviation of objective function as a new robust objective, leading to a bi-objective problem:  

 

𝑚𝑖𝑛
𝒅
[
𝜇𝑓(𝒅)

𝜎𝑓(𝒅)
]

𝑠. 𝑡.  𝜇𝑔(𝒅) ≤ 0 

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.26) 

This formulation incorporate the variance as an objective, (K. Deb & Gupta, 2006; K. 

Deb & Gupta, 2005) offer another way to treat the performance robustness by using an 

additional constraint: 

 

𝑚𝑖𝑛
𝑑
𝜇𝑓(𝒅)

𝑠. 𝑡.  {

‖𝜇𝑓
𝑤(𝒅)−𝜇𝑓(𝒅)‖

‖𝜇𝑓(𝒅)‖
≤ 𝜂

𝜇𝑔(𝒅) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.27) 

This formulation restricts a normalized change in perturbed objective vector from its 

original objective vector by a user-specified limit  𝜂 . The perturbed objective vector 

𝜇𝑓
𝑤(𝒅)  is the worst mean value of objective function among the uncertainty set 𝑈(𝒅) =

{𝝃 ∈ ℝ𝑝|𝒅 − 𝑘𝝈 ≤ 𝝃 ≤ 𝒅 + 𝑘𝝈} which is the neighborhood of design variable like in WCO. 

However, the former formulations just consider the performance robustness of 

objective function and there is no change for constraints. That may cause the optimal 

solution to lie on the constraint boundaries still and it cannot avoid the optimum from 

being in the failure domain if there is a deviation. (Asafuddoula, Singh, & Ray, 2015; 

Picheral, 2013) present other formulations that incorporate the robustness into both 

objective and constraints.  

(K.-H. Lee & Park, 2001) suggest a new robust objective function based on a weighted 

sum of the mean 𝜇𝑓  and standard deviation  𝜎𝑓 . This formulation transfers the multi-

objective problem into a mono-objective one. In addition, the feasibility robustness is 

expressed as a new constraint: 

 

min
𝒅
𝜔
𝜇𝑓(𝒅)

𝜇𝑓0
+ (1 − 𝜔)

𝜎𝑓(𝒅)

𝜎𝑓0

𝑠. 𝑡.  𝑔(𝒅) + 𝑏∑ |
𝜕𝑔

𝜕𝑥𝑖
| 𝑘𝜎𝑖

𝑝
𝑖=1 ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.28) 

where 𝜔 is the weight between 0 and 1. A value close to 0 means that the minimization of 

the standard deviation is more considered than the mean value, and vice versa. 𝑏 is the 

penalty factor and the larger value will enhance the feasibility. 𝜇𝑓0 and 𝜎𝑓0 are two values 

used for scaling to ensure that the two parts have the same order of magnitude. 𝜕𝑔 𝜕𝑥𝑖⁄  is 

the first order derivative relative to input parameter 𝑥𝑖 . Unlike Equation (1.27), this 
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formulation change the original constraint with objective at the same time. The limit-state 

of the reformulated constraints is a translation in the direction of gradient of the initial 

one in order to increase the feasibility robustness and avoiding the optimal solution lies 

on a constraint boundary. 

(Luo, Wang & Du, 2012) propose another formulation that combines 𝜇𝑓  and 𝜎𝑓with 

weights: 

 

min
𝒅
𝜔1𝜇𝑓(𝒅) + 𝜔2𝜎𝑓(𝒅)

𝑠. 𝑡.  𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.29) 

where 𝜔1 and 𝜔2 are the weights given to the mean and standard deviation respectively. 

Here the transformation of constraints has the same principal with in Equation (1.28) but 

it uses the standard deviation of constraints directly as it contains the information of 

gradients also as can be seen from Equation (1.22). 

However, the mean and the standard deviation are not scaled as in the previous 

formulation. Thus, the value of the mean, generally larger than that of the standard 

deviation, can create an imbalance within the objective function. 

(Wang, Huang, & Liu, 2010; Xinying Liu et al., 2008) use  𝑘𝜎𝑓 to formulate the robust 

objective in the same formulation as constraints: 

 

min
𝒅
𝜇𝑓(𝒅) + 𝑘𝜎𝑓(𝒅)

𝑠. 𝑡.  𝝁𝒈(𝒅) + 𝑘𝝈𝒈(𝒅) ≤ 0

𝒅𝐿 + 𝑘𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝝈

 (1.30) 

The expression 𝜇𝑓 + 𝑘𝜎𝑓  can be considered as an upper bound of the probability 

distribution of the objective function. The probability that the value of 𝑓 is less than this 

bound depends on the value of parameter 𝑘. For example, if 𝑘 is chosen as 3, at least 

99.73% of the values will be less than this limit. Thus minimizing 𝜇𝑓 + 𝑘𝜎𝑓  is equivalent 

to minimizing the worst possible value of the objective function 𝑓.  

This form that takes both performances feasibility and robustness into account seems 

to be more practical and widely adopted. 
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Fig. 1.8. Principe of 𝜇𝑓 + 𝑘𝜎𝑓 (Picheral, 2013) 

The aim of RDO is to find the mean value of design variables within a feasible space 

leading to lower sensitivity of the objective and constraints to uncertainty on design 

variables. The process for all these formulations are almost the same: Firstly, the input 

parameters are modelled by their distributions. Secondly, for the reason of simplicity and 

less time consuming, the Taylor Based Method of Moments is used to propagate the 

uncertainty from input to output parameters and calculate the statistical moments of the 

objective function and constraints. At last, robust formulations are used with optimization 

algorithms to solve the new robust problem. 

 

Fig. 1.9. Process of Robust Design Optimization 
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1.3 Reliability-Based Design Optimization (RBDO) 

The method RBDO aims to find the optimal design which satisfies a given targeted 

reliability level represented by probability of failure. In sampling method (Hit or Miss), 

the probability of failure is related to the number of points in a sampling around the mean 

value that fall outside of the reliable domain. This means that RBDO attempts to find the 

optimal design in order to have the probability of failure smaller than a given targeted 

value. The formulation of RBDO is as follows: 

 

min
𝒅
𝑓(𝒅)

𝑠. 𝑡.    𝑃𝑓 ≤ 𝑃𝑡

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.31) 

where 𝑃𝑓 is the probability of failure, 𝛽𝑡 is the targeted value for the reliability index, and 

𝑃𝑡 = 𝛷(−𝛽𝑡) is the targeted value for the probability of failure. RBDO uses probabilistic 

constraints to make sure that the design variables satisfy a desired reliability level while 

minimizing the deterministic objective function. 

For a better understanding of RBDO principle, the definition of probability of failure 

and its calculation should be presented first. 

1.3.1 Probability of failure 

The probability is the likelihood of an event, estimated by a real number between 0 and 

1. The Probability Density Function (PDF) and the Cumulative Distribution Function 

(CDF) define the occurrence of stochastic quantity inherently uncertain. In mathematics, 

the PDF of a continuous random variable is a function that describes the likelihood of an 

output value of this random variable near a certain point. CDF can fully describe the 

probability distribution of a real random variable, and it is the integral of the PDF. The 

statistical description of a random variable 𝑋 given by its CDF 𝐹𝑋 or PDF 𝑓𝑋 is expressed 

as follows: 

 𝑃[𝑋 ≤ 𝑥] = 𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝜏)𝑑𝜏
𝑥

−∞
 (1.32) 

where 𝑃 is the probability of occurrence of an event. 

In the field of electromagnetic device manufacturing, the ability to satisfy consumer’s 

demand or operating constraints is important. The reliability means that designers should 

reduce the probability of failure as much as possible. The determination of the reliability 

of the device is based on the limit-state function. Each constraint 𝑔(𝑿) ≤ 0 can separate 

the domain of 𝑋  into three parts: the limit-state curve is 𝑔(𝑿) = 0, the domain where 

𝑔(𝑿) > 0  is the failure domain, on the contrary, the security domain represents the 

area 𝑔(𝑿) < 0. The designers should try to keep the optimum and its “surrounding” (to 

account for uncertainties) from the failure domain as far as possible or at least reach a 

targeted probability of failure. 
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Fig. 1.10. The failure domain, security domain, and limit-state curve 

The probability of failure is the probability of the event  𝑔(𝑿) > 0. It is calculated with 

the integral: 

 𝑃𝑓 = 𝑃[𝑔(𝑿) > 0] = 𝑃[𝑿 ∈ 𝐷𝑓] = ∫ 𝑓𝑋(𝒙)𝑑𝒙
 

𝐷𝑓
 (1.33) 

where 𝐷𝑓  is the failure domain. As the computational burden is heavy with numerous 

random parameters and complex shape of the failure domain, direct integration is almost 

impossible and thus Monte-Carlo Simulation (MCS) or other techniques such as First-

Order Reliability Method (FORM) is often used to calculate an approximation of  𝑃𝑓 

(Hasofer & Lind, 1974; Liu & Der Kiureghian, 1991). 

MCS is presented in section 1.2.1, and uses a huge number of samples to approach the 

real probability. It is often said that the number of runs should be hundred times the 

inverse of the targeted probability of failure (if 𝑃𝑓 =10-4 then the number of runs should 

be of 106).  

FORM and inverse FORM are based on an iso-probalistic transformation to have a 

normalized vector of statistically independent random variables 𝑈 instead of the initial 

input parameter 𝑋. 

For the Gaussian vector 𝑋 in this manuscript, the transformation 𝑇 is as follows: 

 𝑻: 𝑼 = (𝑿 − 𝒅) 𝝈⁄  (1.34) 
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Fig. 1.11. The first order reliability method (Lopez & Beck, 2012) 

Then the limit-state function changes from 𝑔(𝑑) = 0 to 𝐺𝑈(𝑢) = 0 and the CDF from 

𝐹𝑋 to 𝐹𝑈. 𝐺𝑈(𝑢) is defined as the performance function, and the FORM or inverse FORM 

uses a linear approximation to replace the real 𝐺𝑈(𝑢) at the Most Probable Point of failure 

(MPP) in U-space. The MPP 𝑢∗ is the one that minimizes the distance between the origin 

𝑂 and the limit-state 𝐺𝑈(𝑢) = 0. After 𝑢∗ is found, the limit-state function is replaced by a 

tangent hyperplane crossing 𝑢∗. So the probability of failure is: 

 𝑃𝑓 ≈ ∫ 𝑓𝑈(𝒖)𝑑𝑢 = 𝛷(−𝛽)
 

�̃�𝑈(𝒖)>0
 (1.35) 

where �̃�𝑈(𝒖) = 0 is the hyperplane that approximates the limit-state function 𝐺𝑈(𝒖) = 0, 

𝛷 is the standard Gaussian CDF with Φ(𝒖) =
1

√2
∫ 𝑒−

𝑢2

2 𝑑𝑢
𝑢

−∞
, and 𝛽 = ‖𝒖‖ is the reliability 

index which is equal the norm of 𝑢. This method can also be applied for some other kind 

of distribution, the transformations are given in the following table. 

Table 1.1. Transformations from u-space to x-space 

Distribution type Transformation 

Normal (𝜇, 𝜎) 𝜇 + 𝜎𝑢 

Lognormal (𝜇, 𝜎) 𝑒𝜇+𝜎𝑢 

Weibull (𝜆, 𝑘) 𝜆[− ln(Φ(−𝑢)𝑎)]
1
𝑘 

Uniform (𝑎, 𝑏) 𝑎 + (𝑏 − 𝑎) (0.5 + 0.5𝑒𝑟𝑓(𝑢√2)) 

Gumbel (𝑣, 𝛼) 𝑣 −
1

𝛼
ln[− ln(Φ(𝑢))] 

Gamma (𝑎, 𝑏) 𝑎𝑏 (𝑢
1

√9𝑎
+ 1 −

1

9𝑎
)
3
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The formulation (1.31) is the basis of all RBDO methods and the process of RBDO is 

shown in Fig 1.12. 

 
Fig. 1.12. Process of Reliability-Based Design Optimization 

How to treat the probabilistic constraints is the main point in RBDO formulations, as it 

requires a considerable computation effort and it is related to the accuracy and stability 

of RBDO problem (Aoues & Chateauneuf, 2010). To overcome the numerical difficulties, 

many approaches have been developed in the past several decades. Usually they can be 

separated in three main categories:  

 double-loop methods 

 single-loop methods 

 sequential decoupled methods  

In the following part, the basic ideas of these categories will be briefly presented and 

some representative approaches for each category will be detailed. 

1.3.2 Double-loop method 

Double-loop methods use two loops nested to solve RBDO problems: The inner loop 

aims to analyse reliability of the current design and to calculate the probability of failure 

using FORM or inverse FORM. The outer loop seeks the mean values of the design inputs 

that minimize the objective function and satisfy the probabilistic constraints computed by 

inner loop (Enevoldsen, 1994). As can be seen from Fig 1.13, another optimization 

problem is solved to assess the probability of failure.  
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Fig. 1.13. Process of a typical Double-loop method – Reliability Index Approach 

In order to solve the nested optimization loops, (Nikolaidis & Burdisso, 1988) 

proposed a Reliability Index Approach (RIA) based on FORM. It tries to find the MPP for 

each limit-state during inner loop, then with FORM, the related probability of failure is 

used as the constraint in outer loop. The MPP can be evaluated by either iterative 

procedures or simulation methods. Based on this technique, many approximations have 

been proposed to reduce the computation burden. 

(Reddy, Grandhi, & Hopkins, 1994) proposed a simplified safety index based on the 

advanced second-moment method. (Li & Yang, 1994) decided to use linear programming 

optimization and linearized reliability index to solve RBDO problems. (Grandhi & Wang, 

1998) create an adaptive nonlinear approximation constructed by the function values and 

the first-order gradient at two points on the limit-state to replace the real limit-state 

function.  

Another classical method of double loop is Performance Measure Approach (PMA).  

(Tu, Choi, & Park, 1999) uses an inverse reliability problem searching for the maximum 

performance called Maximum Performance Target Point (MPTP) on the targeted 

reliability surface to compute the probability.  

The principles of RIA and PMA will be introduced in details in the following parts. But 

before that, the main drawback of the Double loop method should be notice here: it is well 

recognized that the computation cost for the inner reliability loop can be largely reduce 

by using approximate method, however this method is still limited due to its inherent two 

loops. 
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RIA uses the FORM to calculate the reliability index in the inner loop: 

 
𝛽 = 𝑚𝑖𝑛

𝒖
‖𝒖‖

𝑠. 𝑡.   𝐺𝑈(𝒖) = 0
 (1.36) 

As already presented in Fig 1.11, the minimum on the failure surface is the MPP, to find 

this solution, either a general optimization algorithm or the HL-RF method can be used 

(Hasofer & Lind, 1974; Rackwitz & Flessler, 1978; Liu & Der Kiureghian, 1991). The 

iterative algorithm of HL-RF is: 

 𝒖(𝑘+1) = (𝒖(𝑘) ∙ 𝒏(𝑘))𝒏(𝑘) −
𝐺𝑈(𝒖

(𝑘))

‖∇𝐺𝑈(𝒖
(𝑘))‖

𝒏(𝑘) (1.37) 

where 𝑘  is the number of iteration, 𝒏(𝑘) = ∇𝐺𝑈(𝒖
(𝑘)) ‖∇𝐺𝑈(𝒖

(𝑘))‖⁄  is the ascent 

direction of the performance function 𝐺𝑈(𝒖) at the point 𝒖(𝑘). The first term on the right 

hand side intends to find a direction with the shortest distance to the limit-state and the 

second term is a correction to reach the performance function (Byeng D. Youn & Choi, 

2004a). 

 

Fig. 1.14. Inner loop iteration of RIA 

For the outer loop of RIA, any constrained non-linear algorithm like SQP or others can 

be chosen to minimize the objective function 𝑓  with the index 𝛽  computed with the 

FORM: 

 

min
𝒅
𝑓(𝒅)

𝑠. 𝑡.  {
𝒈(𝒅) < 0

𝜷(𝒅) ≥ 𝛽𝑡
𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.38) 
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where 𝒈(𝒅) < 0 is used to restrict the search space because the definition in equation 

(1.35) is only valid if the origin is located in the security domain. 

 

Fig. 1.15. RIA approach (Deb, Gupta, Dame, Branke & Mall, 2009) 

In former formulation of RBDO, optimization is carried out with the limitation of the 

reliability index that must be greater than or equal to a targeted value. The calculation of 

this index leads to the search for the MPP. In contrast, for PMA formulation, optimization 

is formulated with the limitation of maximum performance with a given value of 

reliability index. The search of this maximum performance is to maximize the function 𝐺𝑈 

with the limitation that reliability index must achieve the targeted value. This approach is 

considered as the inverse of the FORM approximation (Choi & Youn, 2001; Wu, Millwater, 

& Cruse, 1990). 

So the outer loop becomes: 

 

min
𝑑
𝑓(𝒅)

𝑠. 𝑡.   𝐺𝑝 ≤ 0

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.39) 

where 𝐺𝑝 is the maximal performance measurement. The purpose of the inner loop is to 

find 𝐺𝑝 in U-space by solving: 

 
𝐺𝑝 = 𝐺𝑈(𝒖

∗) = max
𝑢
𝐺𝑈(𝒖)

𝑠. 𝑡.   ‖𝒖‖ = 𝛽𝑡
 (1.40) 
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where 𝒖∗  is the Maximum Performance Target Point (MPTP) that corresponds to the 

targeted index 𝛽𝑡. Also there are other methods besides the optimization algorithms to 

find the solution, the most popular one is the Advanced Mean Value (AMV) method (WU 

et al., 1990) and its derivatives. 

These methods are also iterative approaches. The formulation of the first-order AMV 

method begins with the mean value point: 

 𝒖𝐴𝑀𝑉
(0) = 0, 𝒖𝐴𝑀𝑉

(1) = 𝛽𝑡𝒏
(0) (1.41) 

where 𝒏(0) =
∇𝑋𝑔(𝒅)

‖∇𝑋𝑔(𝒅)‖
=

∇𝑈𝐺𝑈(𝟎)

‖∇𝑈𝐺𝑈(𝟎)‖
 is the normalized steepest ascent direction. The AMV 

method iteratively updates the ascent direction at the probable point 𝑢𝐴𝑀𝑉
(𝑘)  starting 

from 𝒖𝐴𝑀𝑉
(1) : 

 𝒖𝐴𝑀𝑉
(𝑘+1) = 𝛽𝑡𝒏(𝒖𝐴𝑀𝑉

(𝑘) ) (1.42) 

where 𝒏(𝒖𝐴𝑀𝑉
(𝑘) ) =

∇𝑈𝐺𝑈(𝒖𝐴𝑀𝑉
(𝑘)

)

‖∇𝑈𝐺𝑈(𝒖𝐴𝑀𝑉
(𝑘)

)‖
. 

 

Fig. 1.16. Inner loop iteration of PMA by using AMV 

However, as this method only uses the current MPTP to update the direction, it exhibits 

instability and when solving a concave performance function it tends to converge very 

slowly. In order to add updated information during the iterative optimization for 

accelerating the convergence, Conjugate Mean Value (CMV) method is proposed (Choi & 

Youn, 2001). It uses the combination of 𝒏(𝒖𝐴𝑀𝑉
(𝑘) ), 𝒏(𝒖𝐴𝑀𝑉

(𝑘−1)) and 𝒏(𝒖𝐴𝑀𝑉
(𝑘−2)) to calculate 
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the new search direction, so that it points to the diagonal of the three consecutive steepest 

ascent directions: 

 

𝒖𝐶𝑀𝑉
(0) = 𝟎, 𝒖𝐶𝑀𝑉

(1) = 𝒖𝐴𝑀𝑉
(1) , 𝒖𝐶𝑀𝑉

(2) = 𝒖𝐴𝑀𝑉
(2)

𝒖𝐶𝑀𝑉
(𝑘+1) = 𝛽𝑡

𝒏(𝒖𝐶𝑀𝑉
(𝑘)

)+𝒏(𝒖𝐶𝑀𝑉
(𝑘−1)

)+𝒏(𝒖𝐶𝑀𝑉
(𝑘−2)

)

‖𝒏(𝒖𝐶𝑀𝑉
(𝑘)

)+𝒏(𝒖𝐶𝑀𝑉
(𝑘−1)

)+𝒏(𝒖𝐶𝑀𝑉
(𝑘−2)

)‖
, 𝑓𝑜𝑟 𝑘 ≥ 2

 (1.43) 

where 𝒏(𝒖𝐶𝑀𝑉
(𝑘) ) = 𝒏(𝒖𝐴𝑀𝑉

(𝑘) ) has the same definition as in AMV. 

Although CMV can significantly improve the rate of convergence compared to the AMV, 

it is found to be inefficient for the convex performance function. Thus, a method 

combining AMV and CMV is proposed to treat both the convex and concave performance 

functions. This method called Hybrid Mean Value (HMV) method adds a criterion to 

identify the type of performance function as follows (Choi & Youn, 2001; Youn, Choi, Yang, 

& Gu, 2004; Youn & Choi, 2004a): 

 𝜁(𝑘+1) = (𝒏(𝒖𝐻𝑀𝑉
(𝑘−1)) − 𝒏(𝒖𝐻𝑀𝑉

(𝑘) )) ∙ (𝒏(𝒖𝐻𝑀𝑉
(𝑘) ) − 𝒏(𝒖𝐻𝑀𝑉

(𝑘−1))) (1.44) 

This criterion employs steepest ascent directions at the three consecutive iterations 

and can determine whether the performance function is convex or concave at  𝒖𝐻𝑀𝑉
(𝑘)  as 

𝜁(𝑘+1)  represents the second order derivative. If  sign(𝜁(𝑘+1)) > 0, this means that the 

performance function is convex at 𝒖𝐻𝑀𝑉
(𝑘+1), conversely it is concave. 

The flow chart of this method is shown in the figure below. 

First, the algorithm is initialized with 𝑘 = 0  and 𝒖𝐻𝑀𝑉
(0)

= 𝟎 , then it computes the 

steepest ascent direction of the performance function in U-space 𝒏(𝒖𝐻𝑀𝑉
(𝑘)

) as before. If 

the performance function is convex or  𝑘 < 3 , HMV uses the same method as AMV to 

calculate the direction and 𝒖𝐻𝑀𝑉
(𝑘+1). Then if the performance function is concave and 𝑘 ≥ 3, 

CMV method is used. After, 𝐺𝑈(𝒖𝐻𝑀𝑉
(𝑘+1)) at the new MPTP is calculated and a convergence 

criterion will be checked. If the criterion holds, then the algorithm stops, otherwise it 

sets 𝑘 = 𝑘 + 1, computes the gradient ∇𝑈𝐺𝑈(𝒖𝐻𝑀𝑉
(𝑘) ) and 𝒏(𝒖𝐻𝑀𝑉

(𝑘)
) for the next iteration. 

The convergence criterion is: 

 max
 
(|∆𝐺𝑈𝑟𝑒𝑙

(𝑘+1)|, |∆𝐺𝑈𝑎𝑏𝑠
(𝑘+1)|) (1.45) 

where 

  
∆𝐺𝑈𝑟𝑒𝑙

(𝑘+1) =
𝐺𝑈(𝒖𝐻𝑀𝑉

(𝑘+1)
)−𝐺𝑈(𝒖𝐻𝑀𝑉

(𝑘)
)

𝐺𝑈(𝒖𝐻𝑀𝑉
(𝑘+1)

)

∆𝐺𝑈𝑎𝑏𝑠
(𝑘+1) = 𝐺𝑈(𝒖𝐻𝑀𝑉

(𝑘+1)) − 𝐺𝑈(𝒖𝐻𝑀𝑉
(𝑘) )

 (1.46) 
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If the criterion is smaller than a given very small positive value 𝜀, the convergence is 

considered achieved. 

 

Fig. 1.17. The flowchart of HMV 

Comparing the two double-loop methods, the reliability analysis in RIA may fail to 

converge with non-normal distributions. It is because that RIA must be inversely 

transformed into 𝑋 -space to perform a design optimization, and this step introduces 

additional nonlinearity for all probability distributions except normal one (Youn & Choi, 

2004a), as uniform distribution for example. PMA is more feasible as it does not involve 

non-linear implicit constraints. 
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Fig. 1.18. PMA approach (K. Deb et al., 2009) 

1.3.3 Single-loop method 

For the so-called single-loop methods, the main point is that the inner loop is replaced 

by an approximation to avoid the iterative evaluations for reliability analysis in order to 

accelerate the convergence to the optimum.  

 
Fig. 1.19. The process of single-loop method 
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It is known that this type of methods focuses on reducing computing time rather than 

having a good precision. There are also several single-loop methods, some of them use the 

robust optimization methods often called the Six-Sigma approach to formulate the 

problem of RBDO in a single loop. These methods rely on the approximation of the 

statistical moments of the response, transforming the probabilistic constraints into purely 

deterministic functions. (Kuschel & Rackwitz, 1997) proposed to use Karush-Kuhn-

Tucker optimality conditions of the first order reliability method (FORM) to replace the 

reliability constraints. (Chen et al., 1997) proposed the Single Loop Single Vector 

approach that uses derivatives of limit-state to calculate the reliability index. Based on the 

same concept, (Liang, Mourelatos, & Nikolaidis, 2007; Liang, Mourelatos, & Tu, 2004) 

proposed Single Loop Approach. (Shan & Wang, 2008) reformulate the RBDO problem by 

the concept of reliable design space. The RBDO is transformed to a simple deterministic 

problem constrained by the reliable design space rather than its deterministic feasible 

space. The most commonly used single-loop methods are Approximate Moments 

Approach (AMA) and Single Loop Approach (SLA). These two methods will be presented 

in details. 

AMA is based on statistical moments. The first order Taylor expansion is used to 

calculate the mean 𝜇𝑔 and the standard deviation 𝜎𝑔 for all constraint functions 𝑔(𝑑) by 

using the following expressions (Putko, Taylor, Newman, & Green, 2002): 

 {
 𝝁𝒈 = 𝒈(𝒅)

 𝝈𝒈
2 ≈ (𝜵𝒈

𝑻)
2
∙ 𝝈2

 (1.47) 

where 𝜎 is the standard deviation of the input variables 𝑋 and 𝛻 is the gradient operator. 

As shown in Fig 1.20, with these expressions, a first order approximation 𝑔(𝒅∗) + 𝛽𝑡𝜎𝑔 is 

used to replace the value 𝑔(𝒅∗). In this way, the limit-state of constraint is shifted in order 

to keep the reliability as desired. Fig. 1.20 shows the basic idea of AMA approach where 

𝑔(𝒅) = 0 is the deterministic limit-state equation. As the optimum point 𝒅∗ is on the limit-

state curve, the probability of failure is about 50%. The situation which could cause the 

failure around this point with a given probability is shown as shaded area on the left side 

(Fig 1.20). AMA transforms the constraints in order to find a new optimum point 𝒅′∗ on 

the curve of the new limit-state equation 𝑔(𝒅) + 𝛽𝑡𝜎𝑔 = 0. The events which could violate 

the constraints around 𝒅′∗ are greatly reduced as shown by the shaded area on the right 

side. 

Therefore, the problem becomes a deterministic problem: 

 

min
𝑑
𝑓(𝒅)

𝑠. 𝑡.   𝑔(𝒅) + 𝛽𝑡𝜎𝑔 ≤ 0

𝒅𝐿 − 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 + 𝛽𝑡𝝈

 (1.48) 
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Fig. 1.20. Principle of the AMA approach 

This approach is based on a local linear approximation of the constraint functions 

around the mean value of the design parameters. As the probabilistic distribution of the 

performances depends on two moments that are also approximated, the reliability 

assessment could produce significant numerical errors (Byeng D. Youn & Choi, 2004b). 

SLA uses the same approximation as AMA for calculating the moments and the position 

of MPTP (marked as 𝒅′∗  in Fig. 1.20 and Fig. 1.21). The difference between these two 

methods is that SLA evaluates the constraints 𝑔 at the approximate MPTP unlike AMA that 

uses a first-order approximation of the constraint function around the mean value 𝑑 

instead. The SLA formulation is given as (Liang et al., 2004): 

 

min
𝑑
𝑓(𝒅)

𝑠. 𝑡.   𝑔𝒊(𝒅𝒊) ≤ 0

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.49) 

with 

 𝒅𝒊 = 𝒅 + 𝛽𝑡𝝈 ∘ 𝒏𝒊 (1.50) 

where 𝒏𝒊 is the steepest ascent direction for the constraint 𝑔𝒊 as defined before, 𝒅𝒊 is the 

approximation of the MPTP for the constraint 𝑔𝒊 , and ∘  is the Hadamard operator 

(element-wise) product.                      
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Fig. 1.21. Principle of the SLA approach 

The principle of this approach is similar to AMA. As shown in Fig. 1.21, it does not 

search for the MPP of each constraint by using an inner loop but approximate its position. 

However, SLA needs more evaluations than AMA because the former evaluates the 

constraint at the approximated MPTP while AMA use another first order expansion to 

approximate this point. Thus, AMA uses two approximations whereas SLA uses only one. 

It should be noticed that as all the methods of single-loop aim to accelerate the rate of 

convergence in reliability analysis by introducing approximations instead of searching the 

MPTP by solving an optimization problem. Therefore, the accuracy is sacrificed and the 

results given by these methods may not be precise enough especially when the design 

optimization problem is complex. The trade-off between the accuracy and the rate of 

convergence should be made by designers. 

1.3.4 Sequential decoupled method 

Sequential decoupled methods aim to change the initial nested optimizations into a 

series of optimization sequences.  

(Wu & Wang, 1996) proposed the concept of Safety Factor Approach. It uses a series of 

deterministic optimization where the reliability constraints are substituted by equivalent 

deterministic constraints with safety factors that are calculated by one reliability analysis 

made before the beginning of the optimization loop. Based on the same idea of safety 

factor, (Qu & Haftka, 2004) proposed another method called the Probabilistic Sufficiency 

Factor to link the reliability requirement with deterministic optimization. This factor is 

calculated by efficient Monte Carlo simulations combined with response surface 

approximation. (Du & Chen, 2004) proposed the Sequential Optimization and Reliability 

Assessment (SORA) that is one of the most promising and commonly used sequential 

decoupled method. The cycles are sequential and independent. Each individual 
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optimization is deterministic and uses the optimum given by the former optimization as 

an initial point. At the first iteration, the algorithm searches a deterministic solution 

without considering uncertainty and then compute the maximum performance of this 

solution to deduce a shift. This shift lead the solution to move from the limit-states to 

security domain in order to achieve a given probability of failure. The next iterations 

refine the shift.  

Another type of method proposed by (Cheng, Xu, & Jiang, 2006; Yi, Cheng, & Jiang, 

2008) is Sequential Approximate Programming (SAP). The reliability constraints are 

replaced by first order Taylor expansions at the current point and the approximate 

reliability indexes can be obtained from the optimality conditions set at the MPP or MPTP. 

Then, the initial problem is reformulated as a series of approximate sub-problems where 

the optimal design is improved during each sub-problem. The two most popular 

approaches in this category, namely SORA and SAP, will be presented in details. 

SORA employs a series of cycles of deterministic optimizations and reliability 

assessments. In each cycle, optimization and reliability assessment are decoupled from 

each other. The reliability assessment is only conducted after the deterministic 

optimization to verify constraint feasibility under uncertainty. The main point of this 

method is to shift the boundaries of constraints to the feasible direction based on the 

reliability information obtained in the former cycle (Du & Chen, 2004). The updated point 

is used in the next cycle of the deterministic optimization. This cycle is repeated until the 

fulfilment of the convergence criterion.  

The process of SORA method is presented as follows. First, an initial shift 𝒕0 = 0 allows 

finding the solution 𝒅0 of the deterministic problem. At each iteration, the optimization 

problem is defined by:  

 

𝒅𝑘 = argmin
𝒅

𝑓(𝒅)

𝑠. 𝑡.   𝑔(𝒅 − 𝒕𝑘) ≤ 0

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.51) 

The optimal value is set as 𝒅𝑘 . After each optimization, the optimal point 𝒅𝑘  lies on 

some of the limit-state curves, it is called the constraint is active. When considering the 

randomness of 𝑋, the actual probability of failure of an active constraint is about 0.5. Then 

a reliability assessment is implemented at the deterministic optimum solution to locate 

the MPTP corresponding to the desired probability of failure giving 𝒖∗ by solving (1.40). 

To ensure the MPTP is on the deterministic constraint boundary, a shifting vector 𝒕𝑘+1 is 

derived: 

 𝒕𝑘+1 = −𝒖∗ ∘  𝝈 (1.52) 

Therefore, when establishing the equivalent deterministic optimization model in the 

next cycle, the constraints is modified to ensure that the MPTP is on the deterministic 

constraint boundary. 
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A very important advantage of the SORA formulation is that the whole process is 

separated into several iterations of deterministic optimization and it can be easily 

implemented and solved by any classical optimization algorithm (Aoues & Chateauneuf, 

2010). 

 

Fig. 1.22. The process of SORA 

SAP is another approach based on Taylor expansion at the first order. The original 

optimization problem is decomposed into a sequence of sub-problems. Each sub-problem 

is carried out in the vicinity of the current design point 𝒅𝑘 with an approximate objective 

function subjected to a set of approximate constraint functions (Yi et al., 2008). The details 

are presented as follows: 

When considering the PMA optimization problem, the expressions are as in equation 

(1.39). Following the idea of SAP, a sequential approximate formulation is constructed as: 

 

min
𝑑𝑘

𝑓(𝒅𝑘)

𝑠. 𝑡.      𝐺𝑝(𝒅
𝑘) ≤ 0

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅𝑘 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.53) 
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However, if the original performance measure    𝐺𝑝(𝒅
𝑘) =    𝐺𝑈(𝒖

𝑘) is used here, an 

inner optimization problem like (1.40) in PMA will be required. To avoid an inefficient bi-

level algorithm, the performance measure is replaced here by a first order approximation: 

 �̂�𝑝(𝒅
𝑘) = �̂�𝑝(𝒅

𝑘−1) + (𝛁𝒅�̂�𝑝(𝒅
𝑘−1))

𝑇
(𝒅𝑘 − 𝒅𝑘−1) (1.54) 

where the approximation is obtained from the derivative 𝛁𝒅�̂�𝑝(𝒅
𝑘−1), the approximated 

�̂�𝑝(𝒅
𝑘−1) and optimum 𝒅𝑘−1 of the (𝑘 − 1)𝑡ℎ sub-problem, also the current design point 

𝒅𝑘 respectively.  

The derivative is calculated by: 

 
𝜕�̂�𝑝(𝒅

𝑘−1)

𝜕𝒅𝑘−1
=

𝜕�̂�𝑈(𝒖
𝑘−1)

𝜕𝒖𝑘−1
𝜕𝒖𝑘−1

𝜕𝒅𝑘−1
=

𝜕�̂�𝑈(𝒖
𝑘−1)

𝜕𝒖𝑘−1
𝜎 (1.55) 

where 𝒖𝑘−1  can be calculated by (1.42) in the same way as AMV method with 𝒏𝑘  the 

steepest ascent direction of the performance function 𝐺𝑈(𝒖) at the point 𝒖𝑘−1, and 𝒖0 =

0 is usually chosen as the initial estimation.  

With the first order approximation of 𝐺𝑝(𝒅
𝑘), a new formulation is obtained: 

 

𝒅𝑘 = argmin
𝑑

𝑓(𝒅)

𝑠. 𝑡.   �̂�𝑝(𝒅
𝑘−1) + (𝛻𝑑�̂�𝑝(𝒅

𝑘−1))
𝑇
(𝒅 − 𝒅𝑘−1) ≤ 0

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅
𝑈 − 𝛽𝑡𝝈

 (1.56) 

This formulation of SAP is similar to the outer loop of PMA. The same principle can be 

used to convert a RIA formulation into a sequential approximate programming (Cheng et 

al., 2006) with the following the sub-problems: 

 

𝒅𝑘 = argmin
𝑑

𝑓(𝒅)

𝑠. 𝑡.   �̂�(𝒅𝑘−1) + (𝛻𝑑�̂�(𝒅
𝑘−1))

𝑇
(𝒅𝑘 − 𝒅𝑘−1) ≥ 𝛽𝑡

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.57) 

where 

 

�̂�(𝒅𝑘) =
1

‖𝛻𝑈𝐺𝑈(𝒖𝑘)‖
[𝐺𝑈(𝒖

𝑘) − (𝒖𝑘)𝑇 ∙ 𝛻𝑈𝐺𝑈(𝒖
𝑘)]

𝛻𝑑�̂�(𝒅
𝑘) =

𝛻𝑑𝑔(𝒅
𝑘)

‖𝛻𝑈𝐺𝑈(𝒖𝑘)‖

 (1.58) 

In our case, as all random variables follow the normal law, 𝜕𝒅 𝜕𝒖⁄ = 𝝈. Thus 𝛻𝑑�̂�(𝒅
𝑘) 

can be written as: 

 𝛻𝑑�̂�(𝒅
𝑘) =

𝛻𝑈𝐺𝑈(𝒖
𝑘)

‖𝛻𝑈𝐺𝑈(𝒖𝑘)‖
∙
1

𝝈
 (1.59) 
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1.4 Reliability-Based Robust Design Optimization 

(RBRDO) 

As can be seen from the name, RBRDO is a mix of RDO and RBDO. It should be pointed 

out that the aims of RDO and RBDO are different.  

“Robust” means that a function or a device is insensitive to the input variability. Like in 

the Fig 1.23, the PDF which is narrower is considered more robust as the variance of the 

output function is smaller. So robust design is a method to improve the quality of products 

by minimizing the effect from the variability of the input parameters. It emphasizes on 

enhancing the robustness of performance. 

 

Fig. 1.23. The propose of RDO and WCO is to have a narrower PDF (Kang, 2005) 

 

Fig. 1.24. The propose of RBDO is to keep away from the limit-states (Kang, 2005) 
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On the other hand, “reliable” means that it has a small probability of failure. As shown 

in Fig 1.24, the red dotted line is the limit-state 𝑔 = 0  and the left part is the failure 

domain and on the contrary the right part is the security domain. The left PDF is less 

reliable because the probability to violate the constraints is higher than the right one. So 

the reliability-based design approach focuses on maintaining design feasibility at an 

expected probabilistic level (Du, Sudjianto, & Chen, 2004).  

It is desirable to integrate the two methods together in order to have a more robust 

objective and reliable constraints.  

So it is obvious that the combination of these two approaches ensure both reliability 

and robustness during the design optimization (Yadav, Bhamare, & Rathore, 2010) and 

avoid their own shortcomings. Essentially, the type of objective function used in RBDO is 

replaced by the type used in RDO in the hybrid formulation (Enevoldsen, 1994; Tu et al., 

1999; Yu, Chang, & Choi, 1998): 

 

𝑚𝑖𝑛
𝑑
𝑓𝑟(𝜇𝑓 , 𝜎𝑓)

𝑠. 𝑡.    𝑃𝑓 ≤ 𝑃𝑡

𝒅𝐿 + 𝛽𝑡𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 𝛽𝑡𝝈

 (1.60) 

Since the design optimization aims to manufacture the product that satisfies 

customer’s needs and expectations then translate them into appropriate quality 

characteristics. It is important to understand and classify the nature of these product 

quality characteristics that need to be optimized. The classification helps to understand 

and capture the desirability of variables unlike the traditional formulations that seek to 

minimize the total deviation. Normally the types of classification include nominal-the 

best, larger-the-better, and smaller-the-better quality characteristics. Based on this 

classification, authors proposed three type of cost function that will be detailed in the 

following (Chandra, 2001; Byeng D. Youn, Choi, & Yi, 2005).  

1.4.1 Nominal-the-best type 

For nominal-the-best (NTB) quality characteristics, the aim is to achieve the targeted 

value 𝑓𝑡  for the objective function value. This requirement classifies that both positive and 

negative deviations are considered as undesirable, here the deviation is defined as the 

difference between the targeted value of any given objective and the value obtained by 

the model solution (Bhamare, Yadav, & Rathore, 2009). A commonly used formulation for 

this type is written as: 

 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 (
𝜇𝑓−𝑓𝑡

𝜇𝑓0−𝑓𝑡
)
2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)
2

 (1.61) 

where 𝑓𝑡  is the targeted value of the cost function, 𝜔1 and 𝜔2 are the weights chosen by 

the designer,  𝜇𝑓0 and 𝜎𝑓0  are the scaling values which can be chosen equal to the mean 

and standard deviation values at initial point, like Equation (1.28) in RDO. 
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1.4.2 Smaller-the-better type 

For small-the–better (STB) type characteristic, the purpose is searching a smaller mean 

of objective. As shown in the Fig 1.25, 𝜇𝑓
∗  is considered as a better solution than 𝜇𝑓0 . Thus 

a new robust objective function is proposed in order to help us finding a smaller value: 

 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ sign(𝜇𝑓) (
𝜇𝑓

𝜇𝑓0
)
2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)
2

 (1.62) 

The objective is normalized again and for the negative response, the sign function of 𝜇𝑓 

is multiplied in order to properly minimize the objective (Byeng D. Youn et al., 2005). 

  

Fig. 1.25. Robust objective function for a smaller-the-better type characteristic 

(Bhamare et al., 2009) 

1.4.3 Larger-the-better type 

Larger-the-better (LTB) type is on the contrary of small-the-better one, the larger mean 

is more satisfying for designer. A new robust objective function shown in Fig 1.26 should 

be used so that minimizing 𝑓𝑟 could lead to a larger value of mean. The objective function 

is (I. Lee, Choi, Du, & Gorsich, 2008): 

  𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ sign(𝜇𝑓) (
𝜇𝑓0

𝜇𝑓
)
2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)
2

 (1.63) 

 

Fig. 1.26. Robust objective function  for a larger-the-better type characteristic 
(Bhamare et al., 2009) 
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It is needed to remind that for the variance the aim is always minimization and no 

matter the larger-the-better, smaller-the-better or normal-the-best, they only refer to the 

mean. So that in the expressions just the first part with mean change.   

The designer could choose the most suitable type of robust objective function in 

accordance with the real requirements. For example, if our goal is to minimize the volume 

of a device, the quality characteristic is considered as smaller-the-better so that the 

second type of formulation is the most suitable. Besides the mentioned types, the robust 

objective function 𝑓𝑟(𝜇𝑓 , 𝜎𝑓)  can be formulated in various ways based on engineering 

application types. For example (Ziyan Ren, Zhang, & Koh, 2013) propose a new RBRDO 

algorithms for electromagnetic devices using Worst-Case Scenario Approximation. 

(Shahraki, Noorossana, 2013) decides to use a piecewise-linear function as the cost 

function. Also there are other formulations for the types of Normal-the-best and Larger-

the-better like (Paiva, 2010) who proposes to use 𝜇𝑓 + 𝜎𝑓  directly as the objective 

function. 

2 Numerical investigations on methods 
In this section, a simple mathematic example with two variables from (Dong-Wook 

Kim, Nak-Sun Choi, Choi, & Dong-Hun Kim, 2015) is used to compare different 

formulations from each type of optimization method (WCO, RDO, RBDO, RBRDO). In order 

to understand the implications of the choice of different formulations and also to quantify 

the impact of the choice of approaches and algorithms on the accuracy and the number of 

evaluations, the results of the different type of optimization will be given separately. 

The mathematic example has one objective function and three constraints: 

 
𝑓(𝒅) = −

(𝑑1+𝑑2−10) 
2

30
−
(𝑑1−𝑑2+10) 

2

120

𝑠. 𝑡.  𝒈(𝒅) ≤ 0
0 ≤ 𝑑1,2 ≤ 10

 (1.64) 

with 

 𝒈(𝒅) = [

𝑔1(𝒅)

𝑔2(𝒅)

𝑔3(𝒅)
] =

[
 
 
 
 1 −

𝑑1
2𝑑2

5

1 −
(𝑑1+𝑑2−5)

2

30
−
(𝑑1−𝑑2−12)

2

120
 

1 −
80

(𝑑1
2+8𝑑2+5)

 
]
 
 
 
 

 (1.65) 

where 𝑑1  and 𝑑2  are two continuous input variables, as shown in Fig 1.27, the failure 

domain is the shaded area, the counterpart is the security domain, the colour contours are 

contours of objective function 𝑓.  
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For considering the uncertainties, the two variables are supposed to be random 

variables that follow the normal law with the unknown mean 𝒅 which we are looking for 

and the standard deviation 𝝈 = [0.3; 0.3]. 

 

Fig. 1.27. Security domain of the mathematic example (shaded) 

2.1 Comparison of WCO methods 

Traditional WCO method, WWCO, and first-order GWCO presented in section 1.1 in this 

chapter are tested here. The confidence level 𝑘 is equal to 2. Optimal solutions and the 

number of evaluations are given in the following table to compare the efficiency of 

methods. 

As it can be seen in Table 2.2, traditional WCO needs the largest number of evaluations 

owing to the way it works. Indeed, the computation of constraints and objective is made 

within an inner-loop optimization while the search for the optimal value of d is an outer-

loop optimization. 

Another information we can get from the table is that the accuracy of WWCO is higher 

than GWCO. There are two columns of 𝑓𝑤(𝒅𝑜𝑝𝑡) and 𝑔𝑤,𝑖(𝒅𝑜𝑝𝑡) where 𝑖 = 1,2,3, the left 

one are the results calculated by GWCO itself and the right one is calculated by the 

traditional WCO. The difference of these two columns explains the phenomenon why 

GWCO is less accurate, it computes a forward gradient by using only 𝑝 + 1 evaluations 

and overestimates the worst-case while WWCO uses 2𝑝 +𝑚 + 1 evaluations for a better 

assessment where 𝑚 is the number of constraints.  
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Table 1.2. Results of different formulations of WCO with fast model 

Formulations WCO WWCO GWCO 

𝒅𝑜𝑝𝑡 [2.2664; 2.4006] [2.2664; 2.4006] [2.3524; 2.1568] 

𝑓(𝒅𝑜𝑝𝑡) -1.7592 -1.7592 -1.8712 

𝑓𝑤(𝒅𝑜𝑝𝑡) -1.3805 -1.3805 -1.1002 

𝑔1(𝒅𝑜𝑝𝑡) -1.4661 -1.4661 -1.3869 

𝑔2(𝒅𝑜𝑝𝑡) -0.2307 -0.2307 -0.1692 

𝑔3(𝒅𝑜𝑝𝑡) -1.7265 -1.7265 -1.1966 -1.8790 

𝑔𝑤,1(𝒅𝑜𝑝𝑡) 0 0 0 -0.6905 

𝑔𝑤,2(𝒅𝑜𝑝𝑡) 0 0 0 -0.0136 

𝑔𝑤,3(𝒅𝑜𝑝𝑡) -1.1493 -1.1493 -0.8010 -0.9017 

evaluations 12951 231 205 

 

Fig 1.28 to 1.30 show the disparate way of approximation of worst-case constraints by 

two level optimization WCO (Fig 1.28), WWCO (Fig 1.29) and first-order GWCO (Fig 1.30). 

The red point is the optimum, the rectangle denotes the uncertainty set around the 

optimum. Dotted red lines are the real constraints and the solid blue lines present the 

approximation of the worst-case constraints. 

  

Fig. 1.28. Optimum and worst-case of constraints obtained by two level optimization 
WCO 
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Fig. 1.29. Optimum and worst-case of constraints obtained by WWCO 

 
Fig. 1.30. Optimum and worst-case of constraints obtained by first order GWCO 
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The optima found by WCO and WWCO are the same and corners of the uncertainty set 

of optimum just lie on the limit-states. That means all of the possible cases in the 

uncertainty set can satisfy the constraints. However, from Table 2.2 and Fig 1.30 we could 

find that the results of GWCO are different from others and the corners of uncertainty set 

around optimum do not lie on the limit-states. That is because after using (1.11), the 

worst-case of constraints is:  

 𝒈𝑤(𝒅) = 𝒈(𝒅) + ‖∇𝒈(𝒅)‖ ∙ max
𝝃∈𝑈(𝒅)

‖𝝃 − 𝒅‖ (1.66) 

But the first order Taylor expansion at  𝒈(𝒅 + 𝑘𝝈) is: 

 𝒈(𝒅 + 𝑘𝝈) = 𝒈(𝒅) + ∇𝒈(𝒅) ∙ 𝑘𝝈 (1.67) 

The second term on the right side of (1.60) is always greater or equal to the second 

term on the right side of (1.61), thus the distance of worst-case with design point 

calculated by GWCO is always larger than the distance 𝑘𝝈. 

From Fig 1.29 it can also be noticed that the limit-state 𝑔2 = 0 is not smooth in all 

places. This is due to the method used to calculate the worst-case. The WWCO method 

only evaluate the bounds of each variable and then deducts roughly that the worst-vertex 

is the worst-case of all uncertainty set. However in some cases the worst-case may be a 

point in the set not the vertex, in fact if we look at the corresponding non-smooth area in 

Fig 1.28, it can be seen that the curvature is different with other areas. That means the 

position of worst-case is changing with the displacement of uncertainty set, but this 

changing process is ignored by WWCO and it sets all worst-cases as vertex as usual thus 

resulting in the non-smooth blue curve in Fig. 1.29. 

2.2 Comparison of RDO methods 

As there are various formulations for RDO, we choose only several representative ones 

from them. The synthesis of these formulations is shown in the Table 1.3. For some of 

them, mean and standard deviation of initial objective functions are scaled in order to 

reduce the difference of magnitude. The needed scaling values 𝜇𝑓0  and  𝜎𝑓0  can be 

calculated in the beginning by propagating the uncertainties of the chosen starting point.  

The robust objective function of Formulation 1 considers only the mean of initial 

objective (Sundaresan, Ishii & Houser, 1992). Formulation 2 uses the same approximation 

of constraints and apply it for the objective function (Wang, Huang & Liu, 2010). 

Formulation 3 has the similar structure and the only difference is that we add scaled 

values in order to reduce the impact of magnitude difference between the mean and 

standard deviation. All these aforementioned formulations are mono-objective and do not 

introduce any other parameters, thus the results do not change with the designer’s 

requirements. 
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Other formulations can lead to different results which depend on whether the designer 

focus on minimizing the mean or minimizing the standard deviation. Formulation 4 has 

the same robust objective functions than formulation 1, meanwhile it adds an extra 

constraint 𝜎𝑓(𝒅) − 𝜎𝑡 ≤ 0  which is called ϵ-constraint (Barba, 2009; Collette & Siarry, 

2011). This method transforms the initial bi-objective optimization problem into series 

of single-objective problem with an additional constraint so that it could be handled by a 

single-objective optimization algorithm. For our example, the ϵ-constraint method keeps 

𝜇𝑓  as objective while passing 𝜎𝑓  in constraint. The additional constraint function is 

imposed at different limit values from the maximum  𝜎𝑓𝑚𝑎𝑥  to the minimum 𝜎𝑓𝑚𝑖𝑛  of 

standard deviation. So that the optimum may changes with the modification of 𝜎𝑡. The 

values 𝜎𝑓𝑚𝑎𝑥 and 𝜎𝑓𝑚𝑖𝑛 used in robust constraints can be calculated by maximizing and 

minimizing only the standard deviation of initial objective function before RDO begins. 

Formulation 5 proposed by (Sun et al., 2011) adds a weight factor 𝜔 ∈ [0,1] in order to 

balance the weight of mean and standard deviation. However, the authors do not consider 

the situation when 𝜇𝑓(𝒅)  is negative and use only the square what may lead to a 

maximization if 𝜇𝑓(𝒅) is negative. Therefore, we change the formulation by adding the 

sign of 𝜇𝑓(𝒅). Formulation 6 and 7 also use the weight factor, but the former one uses the 

mean and standard deviation values while the latter uses their scaled values. The last two 

formulations consider both objectives separately, one with the original values and the 

other with scaled values. 

 

Table 1.3. Different formulations used for RDO 

Formulation Robust objective functions Robust constraints 

1 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

2 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) + 𝛽𝑡𝜎𝑓(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

3 𝑓𝑟(𝒅) =
𝜇𝑓(𝒅)

|𝜇𝑓0|
+ 𝛽𝑡

𝜎𝑓(𝒅)

𝜎𝑓0  
 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

4 𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) 

𝒈𝒓𝟏(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

𝒈𝒓2(𝒅) = 𝜎𝑓(𝒅) − 𝜎𝑡 , 

𝜎𝑡 ∈ [𝜎𝑓𝑚𝑖𝑛 , 𝜎𝑓𝑚𝑎𝑥] 

5 𝑓𝑟(𝒅) = 𝜔 ∙ 𝑠𝑖𝑔𝑛 (𝜇𝑓(𝒅)) 𝜇𝑓(𝒅)
2 + (1 − 𝜔)𝜎𝑓(𝒅)

2 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

6  𝑓𝑟(𝒅) = 𝜔𝜇𝑓(𝒅) + (1 − 𝜔)𝜎𝑓(𝒅)  𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

7 𝑓𝑟(𝒅) = 𝜔
𝜇𝑓(𝒅)

|𝜇𝑓0|
+ (1 − 𝜔)

𝜎𝑓(𝒅)

𝜎𝑓0  
 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

8 𝑓𝑟1(𝒅) =𝜇𝑓(𝒅), 𝑓𝑟2(𝒅) =𝜎𝑓(𝒅) 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 

9 𝑓𝑟1(𝒅) =
𝜇𝑓(𝒅)

|𝜇𝑓0|
, 𝑓𝑟2(𝒅) =

𝜎𝑓(𝒅)

𝜎𝑓0  
 𝒈𝒓(𝒅) = 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) 
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The value of 𝛽𝑡 is chosen equal to 2. The first two statistical moments, the mean and 

the standard deviation, are calculated by first-order Taylor based method. The results for 

each formulation will be presented sequentially.  

 The results of the first three formulations are given in Table 1.4 and shown in Fig 1.31. 

As there is no weight or other parameters in robust objective function or constraints, 

there is only one result for each formulation. All the three formulations use Sequential 

quadratic programming (SQP) algorithm, as it is a local optimization algorithm, 100 

different uniformly sampled initial points are used here in order to converge to a global 

optimum, and the rates of convergence to the optimum with 100 runs are also shown in 

the table, it explains how many time it will converge to the same minimum. 

Table 1.4. Results for mono-objective formulations of RDO 

Formulation 𝒅𝒐𝒑𝒕  𝑓
𝑟
(𝒅𝒐𝒑𝒕) 𝜇

𝑓
(𝒅𝒐𝒑𝒕) 𝜎𝑓(𝒅𝒐𝒑𝒕) Evaluations 

Convergence 

(with 100 runs) 

1 [2.3524; 2.1568] -1.8712 -1.8712 0.1712 1003 34 

2 [2.3524; 2.1568] -1.5288 -1.8712 0.1712 952 36 

3 [2.3316; 2.0358] 0.4053 -1.4829 0.0955 1598 64 

 

It should be noticed that the optima calculated by these formulations are not similar, 

Formulation 1 and 2 could find the same optimum and the moments calculated  

𝜇𝑓(𝒅𝒐𝒑𝒕) and 𝜎𝑓(𝒅𝒐𝒑𝒕) show that the optimization focus on the mean without considering 

the standard. It is easy to understand because Formulation 1 only focus on the mean and 

the two terms in Formulation 2 has different order of magnitude, absolute value of mean 

is much greater than standard deviation, so these two formulations get to the point which 

minimize the mean. Formulation 3 leads to a solution that presents a trade-off between 

the mean value and standard deviation thank to the scaling. As 𝛽𝑡 is fixed, a single solution 

is found. 

 
Fig. 1.31. Results for the formulation 1, 2 and 3 
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In the Fig. 1.31, the left part presents the mean 𝜇𝑓(𝒅𝒐𝒑𝒕)and standard deviation  

𝜎𝑓(𝒅𝒐𝒑𝒕) calculated at the optimum found. In the right part, the blue dotted lines are initial 

limit-states 𝑔 = 0, and black solid lines are the robust limit-state 𝝁𝒈(𝒅) + 𝛽𝑡𝝈𝒈(𝒅) = 𝟎, 

solutions found by different formulations are presented by the red points.  

For Formulation 4， we first minimize and maximize the standard deviation of initial 

objective function to obtain 𝜎𝑓𝑚𝑖𝑛  and 𝜎𝑓𝑚𝑎𝑥  and divide the interval [𝜎𝑓𝑚𝑖𝑛, 𝜎𝑓𝑚𝑎𝑥] into 

100 sections. 𝜎𝑡  equals to every bounds of these sections and the results of these 101 

optimizations are shown in the figure below.  As before, SQP algorithm is used and to be 

sure that the solutions is global, 20 runs with different initial points are used. 

The left part of the Fig. 1.32 presents the mean and standard deviation of initial 

objective function calculated at optima found, the right part presents locations of optima.  

The optima distribute almost on the two robust limit-states 𝑔𝑟2 and 𝑔𝑟3. However, the 

Pareto front obtained is not continuous because the points on the right part of 𝑔𝑟2 are 

dominated by other solutions which can be seen from the Fig 1.32 (left). Some solutions 

lie on a line and not exactly on the limit-state 𝑔𝑟3 because the constraint is not active for 

some minima of the robust objective function. 

 
Fig. 1.32. Results for Formulation 4 

To verify this view, we can modify the third constraint in Equation (1.65) into equality 

constraint as follows: 

 

𝑓(𝒅) = −
(𝑑1+𝑑2−10) 

2

30
−
(𝑑1−𝑑2+10) 

2

120

𝑠. 𝑡.  

{
 
 

 
 𝑔1(𝒅) = 1 −

𝑑1
2𝑑2

5
≤ 0

𝑔2(𝒅) = 1 −
(𝑑1+𝑑2−5)

2

30
−
(𝑑1−𝑑2−12)

2

120
≤ 0 

ℎ(𝒅) = 1 −
80

(𝑑1
2+8𝑑2+5)

= 0

0 ≤ 𝑑1,2 ≤ 10

 (1.68) 
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This way, all solutions found should be on the robust equality constraint. In Fig 1.33, 

left part, the blue points are calculated with an equality constraint while the green points 

are calculated by initial problem. For the right part, red points are optima found by the 

modified problem with equality constraint and yellow points are optima found by the 

initial problem. It can be seen that optima found by the modified problem with equality 

constraint are exactly on the limit-state but the front Pareto with blue points is a little 

upper than the other one with green points, thus they are dominated so we can say that 

the optima found in Fig 1.32 are better than the solutions on the limit-state. 

 

Fig. 1.33. Comparison of the results for Formulation 4 

For Formulation 5, 6 and 7, the weight 𝜔 is chosen from 0 to 1 with a step of 0.01. Thus, 

101 optimizations are also computed. Again, SQP algorithm is used with 20 runs from 

different initial points. The results of these three formulations are presented in Table 1.5 

and the Fig. 1.34 to 1.36.  

All these three formulations have the same solutions: three intersection points of the 

three robust constraints. In fact, these points are also the bounds of the front Pareto 

shown in Fig 1.32. The reason why the weight factor 𝜔 does not work is due to the concave 

shape of the front Pareto. 

Table 1.5. Different values of weight for solutions 

Formulation 𝒅𝒐𝒑𝒕 = [1.5828; 8.3685] 𝒅𝒐𝒑𝒕 = [6.3417; 3.0564] 𝒅𝒐𝒑𝒕 = [2.3524; 2.1568] 

5 𝜔 = 0 𝜔 = 0.01 𝜔 ∈ [0.02,1] 

6 𝜔 ∈ [0,0.05] 𝜔 ∈ [0.06,0.16] 𝜔 ∈ [0.17,1] 

7 𝜔 ∈ [0,0.32] 𝜔 ∈ [0.33,0.64] 𝜔 ∈ [0.65,1] 

 



82 
 

 
Fig. 1.34. Results for Formulation 5 

 
Fig. 1.35. Results for Formulation 6 

 
Fig. 1.36. Results for Formulation 7 
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The main divergence among the results of these three formulations is that the values 

of 𝜔 for obtaining each point are very different, as shown in following table. 

For Formulation 5, as the square values of mean and standard deviation increase the 

difference of their orders of magnitudes, only when 𝜔 = 0 or 𝜔 = 0.01 the method could 

converge to the two former solutions, all the rest values of 𝜔 have no influence on the 

solution. Formulation 6 without the square information has more chance to obtain the 

two former solutions but more than 80% values of 𝜔  will result in the third one. 

Formulation 7 seems to solve the problem quite good by scaling the mean and standard 

deviations. Each solution is found by almost one third of 𝜔 values. This formulation is 

more balanced than the two other. 

As Formulation 8 and 9 are multi-objective problems, SQP cannot solve them, so goal-

attaining method and Non-dominated Sorting Genetic Algorithm (NSGA2) are both tested 

here. 

The goal-attainment method needs a given coordinate and seeks to find a design belong 

to the Pareto front which is the closest point to the given coordinate following a given 

direction (Barba, 2009; Collette & Siarry, 2011). In this example, the goal is given as 

[𝜇𝑓𝑚𝑖𝑛; 𝜎𝑓𝑚𝑖𝑛 ]  for Formulation 8 and [𝜇𝑓𝑚𝑖𝑛/|𝜇𝑓
∗|; 𝜎𝑓𝑚𝑖𝑛 𝜎𝑓

∗⁄  ] for Formulation 9. Also, 

the searching direction is changed from 0 to 1 with 100 equal sections.  

NSGA2 is a global evolutionary algorithm that can treat more than one objective. The 

results of these two algorithms are shown in the following figures. Fig. 1.37 and 1.38 

present results of Formulation 8 using goal-attainment and NSGA2 method respectively. 

Fig 1.39 and 1.40 show results of Formulation 9 with scaling values. 

 
Fig. 1.37. Results for Formulation 8 using goal-attainment 
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Fig. 1.38. Results for Formulation 8 using NSGA2 

 

Fig. 1.39. Results for Formulation 9 using goal-attainment 

 
Fig. 1.40. Results for Formulation 9 using NSGA2 
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From the Fig 1.37 to 1.40, it can be seen that the algorithm goal-attainment depends on 

the formulation: without scaled values the result is not good enough as the distance 

between two adjacent solutions is large. NSGA2 does not have this problem but the 

solutions have disturbances and do not lie on a straight line. 

A comparison for all 9 formulations is presented in the following table. The maximum 

and minimum solutions they can obtain are taken into account. Besides the maximal and 

minimal distances between two adjacent points found are also considered. It should be 

noticed that if the minimal distance is less than 10−4, we treat it as 0 and maximal distance 

for the formulations which have more than 3 solutions is the distance except the gap of 

discontinuity. “Function evaluations” is the average number for one solution. 

Table 1.6. Comparison of different formulations of RDO 

Formulation 
Minimal 

𝜇𝑓 
Maximal 

𝜇𝑓 
Minimal 

𝜎𝑓 
Maximal 

𝜎𝑓 
Minimal 

distance 

Maximal 

distance 
Function 

evaluations 

1 with SQP -1.8712 -- -- 0.1712 -- -- 1003 

2 with SQP -1.8712 -- -- 0.1712 -- -- 952 

3 with SQP -1.4829 -- -- 0.0955 -- -- 1598 

4 with SQP -1.8709 -0.0864 0.0228 0.1712 0 0.1551 1472 

5 with SQP -1.8712 -0.0862 0.0228 0.1712 4.0895 7.1320 1071 

6 with SQP -1.8712 -0.0862 0.0228 0.1712 4.0895 7.1320 1102 

7 with SQP -1.8712 -0.0862 0.0228 0.1712 4.0895 7.1320 1109 

8 with goal-attain -1.8619 -0.0864 0.0228 0.1706 0 2.3767 5498 

8 with NSGA2 -1.8704 -0.0865 0.0228 0.1710 0 0.4865 12138 

9 with goal-attain -1.8692 -0.0864 0.0228 0.1711 0 0.3058 6883 

9 with NSGA2 -1.8556 -0.0871 0.0229 0.1709 0.0001 0.4326 11862 

 

Obviously, Formulation 1 and 2 can obtain the exact 𝜇𝑓𝑚𝑖𝑛  and  𝜎𝑓𝑚𝑎𝑥 , however as 

mono-objective methods, they could not change the solution with different way of trade-

off between the mean and the standard deviation. Formulation 5, 6 and 7 can find the 

points which can achieve 𝜇𝑓𝑚𝑖𝑛  with 𝜎𝑓𝑚𝑎𝑥  and 𝜇𝑓𝑚𝑎𝑥  with  𝜎𝑓𝑚𝑖𝑛 , among them 

Formulation 7 is the best as the intervals of weight values lead to the three different points 

are almost equal. Formulation 4 with 𝜖  constraint and Formulations 8, 9 with multi-

objective algorithms can obtain a Pareto front which presents all non-dominated 

solutions. However, the extrema found are not the real minimum and maximum for 𝜇𝑓 

and 𝜎𝑓 exactly. Among all of them, Formulation 4 is the most effective as its solutions are 

closest to the real extremes and the distances between each two neighbouring solutions 

are the shortest. It is to mention that the average number of evaluations for Formulation 
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4 is almost the same as other formulations which could not obtain a complete Pareto front 

and at least 5 times less than Formulation 8 and 9 that found similar solutions. 

2.3 Comparison of RBDO methods 

As mentioned before, there are three categories of RBDO methods. For understanding 

the implications of the choice of different method and to quantify the impact of the choice 

of approaches and algorithms on the accuracy and the number of evaluations, six 

mentioned methods (RIA, PMA, AMA, SLA, SORA and SAP) are used and the results are 

given in the next table. The different optima are compared with each other in Fig 1.41 

where the dotted curves present contours of objective and constraint boundaries. Limit-

state 𝑔𝑖 = 0 are depicted as solid lines. In order to maintain the consistency, the targeted 

index 𝛽𝑡  is kept equal to 2 so that the targeted probability of failure 𝑃𝑡  for RBDO 

is Φ(−𝛽𝑡) = 2.28%. 𝑃𝑓  is computed by Monte-Carlo simulation with a sampling of 106 

realizations. 

In order to better understand the difference between RBDO and Deterministic Design 

Optimization (DDO) without uncertainty, result of DDO is also presented here. The 

original formulation of DDO is expressed as: 

 

min
𝒅
𝑓(𝒅)

𝑠. 𝑡.  𝒈(𝒅) ≤ 𝟎

𝒅𝑳 ≤ 𝒅 ≤ 𝒅𝑼
 (1.69) 

Here we could see that only the mean of design variables is considered in the 

optimization process and no more reliability analysis or propagation of uncertainty are 

adjoined. As for double-loop method, the inner loop is also an optimization sub-problem. 

Thus beside the methods introduced in section 1.3 (HLRF for inner loop of RIA, HMV for 

inner loop of PMA) traditional optimization algorithms like SQP can also be suitable for 

the inner loop and these results are also presented here to compare each other for the 

sake of choosing the best method. Also, as mentioned in section 1.3.4, SAP method can use 

both principles of PMA and RIA, these two different SAP are also tested and presented 

here as SAP with PMA and SAP with RIA. 

The column named convergence means that we run the algorithms 100 times with 

different initial points to see how many times it converges to the global optimum.  

For this fast model example, from Table 1.7 and Fig 1.41, it is obviously that only the 

result of DDO lies on the limit-states and for that reason, the maximal 𝑃𝑓 is 50% if the 

design variables follow the normal law. Most of the RBDO methods could find a result that 

satisfies the reliability targeted index. The probabilities of failure of RBDO methods are 

close to the targeted probability except for the single-loop method AMA because of the 

approximation used to increase the speed of convergence by sacrificing the accuracy.  
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Table 1.7. Results of the different methods of RBDO 

Method 𝑑1 𝑑2 𝜇𝑓 𝜎𝑓 
Max of 

𝑃𝑓(%) 
Convergence 

(100 runs) 
Function 

evaluations 

DDO 2.4398 0.8400 -2.6266 0.2072 50 20% 84 

RIA with SQP 2.2513 1.9691 -1.9948 0.1792 2.28 29% 4539 

RIA with HLRF 2.2513 1.9691 -1.9945 0.1792 2.28 33% 1729 

PMA with SQP 2.2513 1.9691 -1.9945 0.1792 2.28 82% 3183 

PMA with HMV 2.2513 1.9691 -1.9945 0.1792 2.28 84% 1318 

AMA 2.3524 2.1568 -1.8712 0.1715 1.87 46% 132 

SLA 2.2512 1.9677 -1.9953 0.1793 2.29 32% 165 

SORA 2.2513 1.9691 -1.9945 0.1792 2.28 45% 531 

SAP with RIA 2.2513 1.9691 -1.9945 0.1792 2.28 22% 278 

SAP with PMA 2.2513 1.9691 -1.9945 0.1792 2.28 37% 181 

 

 
Fig. 1.41. The results of different methods plotted in the search space 

For double-loop methods, the performance of using SQP for the inner loop is notable 

less than using HLRF or HMV, the difference is reflected in the need of more evaluations 

numbers. For PMA and RIA, SQP will need almost 3 times more evaluations than HMV and 
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HLRF, respectively. For these two methods, PMA is more effective not only due to the less 

number of evaluations but also because of it has larger convergence rate than RIA. 

For single-loop methods, AMA is the fastest but the most inaccurate. SLA is slower than 

AMA but still faster than any other RBDO methods, besides it is more accurate than AMA 

although it still has a little difference with others. It presents a good compromise between 

accuracy and speed. 

Sequential decoupled methods are faster than double-loop methods and slower than 

single-loop ones but they do not loss accuracy. Among them, SAP is the most effective. 

Among all RBDO methods, we can conclude that for this fast model example, SAP is the 

most efficient method as it can obtain the solution without losing any accuracy and a 

number of evaluations close to single-loop methods. 

2.4 Comparison of RBRDO methods 

The three types of RBRDO (1: Normal-the-best, 2: Smaller-the-better, and 3: Larger-

the-better) are used here with two other formulations presented by (Ziyan Ren et al., 

2013) and (Paiva, 2010). The synthesis is shown in the following table. 

Table 1.8. Different formulations used for RBRDO 

Formulation Objective function Constraint 

1 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 (
𝜇𝑓 − 𝑓𝑡

𝜇𝑓0 − 𝑓𝑡
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

  𝑃𝑓(𝑔(𝒙) > 0) ≤ 𝑃𝑡  

2 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ sign(𝜇𝑓) (
𝜇𝑓

𝜇𝑓0
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

  𝑃𝑓(𝑔(𝒙) > 0) ≤ 𝑃𝑡  

3 𝑓𝑟(𝜇𝑓 , 𝜎𝑓) = 𝜔1 ∙ sign(𝜇𝑓) (
𝜇𝑓0
𝜇𝑓
)

2

+ 𝜔2 (
𝜎𝑓

𝜎𝑓0
)

2

  𝑃𝑓(𝑔(𝒙) > 0) ≤ 𝑃𝑡  

4 𝑓𝑟(𝒅) = 𝑓𝑤(𝒅)  𝑃𝑓(𝑔(𝒙) > 0) ≤ 𝑃𝑡  

5  𝑓𝑟(𝒅) = 𝜇𝑓(𝒅) + 𝜎𝑓(𝒅)  𝑃𝑓(𝑔(𝒙) > 0) ≤ 𝑃𝑡  

 

𝑃𝑡  is 2.28% in order to keep the consistency with 𝛽𝑡. 𝜔1, 𝜔2 are both equal to 0.5, 𝜇𝑓0 

and 𝜎𝑓0 are calculated by propagating the uncertainties of the chosen starting point in the 

beginning, in this example, we fixed it as the value computed by the design point [3.5; 5]. 

𝑓𝑡  is the targeted value which we expect, as at the beginning the minimum of RBRDO is 

unknown, so we use the minimum of DDO to instead. However it should be noticed that 

this value 𝑓𝑡 = −2.6266 is just an ideal result and could never be attain as the constraints 

change. 𝑓𝑤(𝒅) in Formulation 4 is the worst-case of design point 𝒅 in the uncertainty set 

defined in Equation (1.2) and can be calculated in the same way as presented in WWCO. 

Results are given in Table 1.9 and Fig 1.42. It can be noticed that the average numbers 

of evaluations are similar and the results can almost satisfy the targeted probability of 

failure. Formulation 4 and Formulation 5 find exactly the same solution as RBDO because 
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the processing of constraints is made in the same way as RBDO. Formulation 4 does not 

consider the standard deviation of objective and Formulation 5 takes much more 

attention on the mean than the deviation as their magnitude are different.  

Moreover, with the same weight factor ω, STB (Formulation 2) could find the smallest 

𝜇𝑓 that corresponds to its purpose. The value of 𝜇𝑓 found by NTB (Formulation 1) is larger 

than STB and LTB (Formulation 3) finds the largest 𝜇𝑓 as expected. 

Table 1.9. Results given by different formulations of RBRDO 

Formulation 1 2 3 4 5 

𝑥𝑜𝑝𝑡 [5.6590; 4.3016] [6.4706; 2.9672] [1.3675; 8.5018] [2.2513; 1.9691] [2.2513; 1.9691] 

𝜇𝑓(𝑥𝑜𝑝𝑡) -1.0750 -1.5301 -0.0690 -1.9945 -1.9945 

𝜎𝑓(𝑥𝑜𝑝𝑡) 0.0803 0.0968 0.0206 0.1789 0.1789 

𝑃𝑓1(%) 0 0 2.2778 2.2782 2.2782 

𝑃𝑓2(%) 1.4053 2.1685 0 2.2841 2.2841 

𝑃𝑓3(%) 2.2761 2.2952 2.3045 0 0 

Evaluations 1714 1612 1746 1510 1802 

 

 
Fig. 1.42. The results of different RBRDO methods 

Besides, if we change the value of weight parameters  𝜔1  and 𝜔2 , the former three 

formulations give normally a Pareto front. However, due to the different formulations, the 

results are also different. For NTB we move 𝜔1 from 0 to 1 with step 0.01 and let 𝜔2 =

1 − 𝜔1, it could find various solutions as in Fig 1.43 but for STB it can only reach the three 

bounds and for LTB only one solution can be found.  

In fact, the results of the Formulation 2 to 5 in Table 1.9 are the three bounds of the 

Pareto front. It means all these results can be obtained by the formulation Normal-the-

best by changing the weight parameter. So it can be concluded that for this example, NTB 

is the most universal formulation as it can contain all results of other formulations. 
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Fig. 1.43. Results for NTB (Formulation 1) with different ω 

 

Fig. 1.44. Results for STB (Formulation 2) with different ω 

 

Fig. 1.45. Results for LTB (Formulation 3) with different ω 
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An interesting thing is that as Formulation 7 which uses also scaled values in RDO, STB 

could only find the bounds of the Pareto front as the relation function of 𝜇𝑓  and 𝜎𝑓  is 

concave. However, for NTB it can attain a Pareto front better than STB. The reason is that 

the NTB focus on (
𝜇𝑓−𝑓𝑡

𝜇𝑓0−𝑓𝑡
)
2

 and (
𝜎𝑓

𝜎𝑓0
)
2

, but the relationship of these two terms are no 

longer concave, it turns to convex instead. The following figure presents the relations 

between 𝜇𝑓 and 𝜎𝑓, 
𝜇𝑓

|𝜇𝑓0|
 and 

𝜎𝑓

𝜎𝑓0
 from RDO, sign(𝜇𝑓) (

𝜇𝑓

𝜇𝑓0
)
2

 and (
𝜎𝑓

𝜎𝑓0
)
2

from STB, (
𝜇𝑓−𝑓𝑡

𝜇𝑓0−𝑓𝑡
)
2

 

and  (
𝜎𝑓

𝜎𝑓0
)
2

 from NTB respectively and it can be noticed that the last function type is 

different from the formers because in this analytical example, the value of initial objective 

function is always negative so that the square operation changes the relation. 

 

Fig. 1.46. Different relation functions 
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3 Conclusion 
All of the four different categories taking into account uncertainty (WCO, RDO, RBDO 

and RBRDO) aim at finding a more robust or reliable solution but their principals are not 

the same. The following table synthesizes the differences among the four categories on 

the parts of input information, objective, and strategies. 

Table 1.10. A comparison among optimization methods considering uncertainty 

Method WCO RDO RBDO RBRDO 

Information 

on input 

Mean, standard 

deviation or 

gradient 

Mean and 

standard 

deviation 

PDF PDF 

Objective 

Minimization 

and variability 

reduction 

Minimization of 

mean and/or 

standard 

deviation of 

objective 

Minimization 

under 

probabilistic 

constraints 

Minimization of mean 

and/or standard 

deviation of objective 

under probabilistic 

constraints 

Analysis 

type 

Variation 

analysis 

uncertainty 

propagation 

Reliability 

analysis 

uncertainty propagation 

and reliability analysis 

Strategy 
moving the 

mean 

consider two 

objectives 

Moving the 

mean 

consider two objectives 

and moving the mean 

 

This chapter introduces separately these four different categories of optimizations that 

can deal with input uncertainties and presents the numerical investigation of these 

methods on a mathematical example. 

Each category has several methods or formulations to tackle the uncertainty and to 

balance their objectives, but their performances are unequal. 

For WCO methods, with the fast mathematical model, WWCO seems more efficient than 

traditional WCO approach or gradient based approaches. 

For RDO, as they consider both the mean and standard deviation of initial objective 

function, multi-objective formulations or those with weight parameters and scaled values 

are more suitable as they can give different reference results with different emphasis. 

RBDO can be derived into three type of methods, single loop methods are the fastest 

but they lose the accuracy, double-loop methods need the largest number of evaluations, 

sequential decoupled methods are the most efficient. Among those last methods SAP is 

the most suitable method on the analytical example. 

RBRDO yields the same conclusion as RDO: methods with scaled values and weight 

parameters are more suitable and, among them, Normal-the-best formulation is the most 

universal. 
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However, these methods can only be applied with fast models. The biggest difference 

between fast model and cumbersome model like finite element models used in 

electromagnetic, is that the latter one is time-consuming to evaluate so that optimization 

will be very time costly. Thus, the formulations and optimization methods presented in 

this chapter become unbearable because of the huge time consumption. For this reason, 

more efficient methods which use surrogate models and could combine modelling and 

optimization together in the save process are promising. The next chapter will introduce 

the robust or probabilistic optimization methods adapted to heavy models. 
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Chapter 2: Methods adapted to heavy 

models 

1 State of the art 
Nowadays numerical simulations like Finite Element Analysis (FEA) are playing a more 

and more important role in electromagnetic device designs as we can use them to 

simulate complicated geometry systems with high accuracy. 

However, the electromagnetic devices are sometimes too complex and even the 

simulations of these devices’ behaviors need heavy analysis. Hence, single evaluation of 

FEA could take several minutes up to even days. Therefore, the expense of running 

analysis is non-negligible. For the sake of avoiding a significant overall time in the 

optimization process, meta-models have gained more and more attention. The idea of 

meta-model based optimization is using fast-evaluation meta-models to replace the high-

fidelity heavy models in order to reduce the computational burden of optimizations. 

Besides, other times, we do not know what is inside the high-fidelity model. That means 

the system or device is a black box for which we only know the input and output 

relationships without knowing the internal structure. To optimize with black-box models 

that are computationally expensive, the meta-model should also be built in advance. 

In addition to these mentioned necessities, there are other advantages of using meta-

models. Numerical models are sources of numerical noise for example the numerical noise 

of finite element analysis (FEA) introduced by the mesh adaptation (Mester, 2007; 

Neittaanmäki, Rudnicki, & Savini, 1996). Thus, if a gradient-based algorithm is used, the 

convergence may be affected. However, meta-models are usually noise-free models 

(sufficiently smooth function with respect to the inputs) so that this problem do not occur. 

However, there are also some drawbacks of using meta-model based optimization. 

First, it should be noticed that the global prediction accuracy of meta-models is always 

inferior to the high-fidelity finite element models or the real system even when a high 

number of sampling points are chosen to construct the meta-model. The precision and the 

reduction of computational burden cannot be obtained simultaneously. Thus, our 

proposition is to use a limited sample size to improve the accuracy of meta-model as much 

as possible. One of the effective methods is to continually reconstruct the meta-model 

during the optimization design process according to the requirements. This approach is 

called adaptive meta-model and it can add new samples at the most needed place to 

increase the accuracy gradually. 
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This chapter starts by introducing some common methods for creating meta-models 

and some mostly used adaptive meta-model based optimizations with infill searching 

criteria (ISC). Then, different types of meta-model based optimization strategies for heavy 

models are presented in details and the most efficient strategies for each type of design 

optimization are highlighted. 

1.1 Surrogate models 

Optimization process can be greatly accelerated by using suitable meta-models, also 

called surrogate models, to replace the high-fidelity heavy model, even if at the expense 

of a loss in accuracy (Rijpkema, Etman, & Schoofs, 2001). To sum-up in a sentence, the 

surrogate model is using some approaches to create a continuous function from a discrete 

sample of assessment points (Bompard, 2011). From the early 50s of the last century, 

many different methods to create surrogate models were proposed. Most of them are 

based on interpolation. Initially, we find of course the methods of linear interpolation, 

then quadratic. Quadratic interpolation involves a second order polynomial to fit the 

function and it is fast in both creation and evaluation (Giunta & others, 1997). These 

methods were then extended to polynomial interpolation, it is the basis of the Response 

Surface Methodology (RSM) proposed by (Gep & Kb, 1951).  And also, it has been used for 

regression methods.  

In the late 1950s, (Lettvin, Maturana, McCulloch, & Pitts, 1959) first theorized the 

Artificial Neural Networks (ANN), which is considered as the basis of neural networks. 

They demonstrated in particular that neural networks can approximate complex logical, 

algebraic or symbolic functions. In the following years, ANN were studied in great details 

and nowadays there are over 20 different types of ANN used in a vast range of applications 

ranging from non-linear control to data mining (Liu & Batill, 2000; Paiva, 2010). 

Since 1980s, three classes of meta-model methods have been proposed and because of 

their simplicity of construction they have been widely used. The first class is Multivariate 

Adaptive Regression Splines (MARS) proposed by (Friedman, 1991). This technique is a 

two-pass stepwise non-parametric regression and can be considered as an extension of 

linear models that automatically models nonlinearities and interactions between 

variables. The second class is Radial Basis Function (RBF) which uses a real-valued 

function whose value depends only on the distance from the origin or alternatively on the 

distance from some other point. (Broomhead & Lowe, 1988) proposed to use this type of 

function in neural networks and since then with the contributions of (Moody & Darken, 

1989), the RBF network has become widespread and alternative to traditional neural 

network due to the latter’s expensive cost of training models (Orr & others, 1996). Last 

class is Kriging model, which was first developed in geostatistical (Krige, 1951) and then 

extended to interpolation of mathematical functions (Sacks, Welch, Mitchell, & Wynn, 

1989). 
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In the 1990s, a new method called Support Vector Machine was proposed (Cherkassky, 

1997). Numerous researches have been devoted to the development of this type of 

method in recent years. However, the applications to physical problems seem quite few. 

Comparative studies have been made between many methods of surrogate modelling. 

(Sacks et al., 1989) compared Kriging to polynomial interpolation methods in 

aeronautical applications, (Jin, Chen, & Simpson, 2001) and (Peter, Marcelet, Burguburu, 

& Pediroda, 2007) compared polynomial regression, Kriging, MARS, and RBF in 

mathematical models and industrial applications. (Varadarajan, Chen, & Pelka, 2000) 

compared neural networks with polynomial regression in thermodynamic applications. 

Among these comparisons, there is not one method that surpasses all others in all 

applications, nevertheless, it seems that Kriging is generally the most effective one (Jin, 

Du, & Chen, 2003). Therefore, this method will be presented in more details in next 

section. 

1.2 Kriging 

 Kriging is a statistical interpolation method. In the 1960s, his work was then 

mathematically formalized by Matheron at Ecole des Mines de Paris (Matheron, 1963). It 

was in the late 1980s that (Sacks et al., 1989) proposed to use this method for the 

approximation of functions from computer experiments and since then the use of Kriging 

has developed quickly and numerous variants have been proposed (Currin, Mitchell, 

Morris, & Ylvisaker, 1991). (Huang, 2005; Lee & Park, 2006; Simpson, Mauery, Korte, & 

Mistree, 2001) gave some recent examples of using Kriging to develop surrogate models 

in design optimization.  

Kriging model makes it possible to use the determination of small size sample to 

approach complex functions, it estimates the value of the function to be predicted at some 

given point by a linear combination of learning samples. The weight associated with each 

sample depends only on the distance at the point considered, and it is assumed that points 

which are close to each other in the space tend to have similar characteristics so that the 

nearest sample will have the largest weight value (Baudoui, 2012).  

As Kriging is based on Gaussian process, the latter will be introduced first. 

1.2.1 Gaussian process 

Gaussian process (GP) is a generalization of the multivariate normal distribution and 

defines a probability distribution over functions in the continuous domain. In a Gaussian 

process, every point in some continuous input space is associated with a normally 

distributed random variable and every finite collection of those random variables has a 

multivariate normal distribution. The distribution of a Gaussian process is the joint 

distribution of all those random variables (Rasmussen & Williams, 2006). 
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A GP is determined by a mean 𝜇𝑍(𝒙) and a kernel that is also known as covariance 

function 𝐾(𝒙, 𝒙′): 

 𝑍 ∼ 𝐺𝑃(𝝁𝒁, 𝐾): 𝜇𝑍(𝒙) = 𝐸(𝑍(𝒙)), 𝐾(𝒙, 𝒙′) = 𝐶𝑜𝑣(𝑍(𝒙), 𝑍(𝒙′)) (2.1) 

where 𝒙 and 𝒙′ are two input points. 

From the definition, we can see that any set of 𝑁 input vectors 𝑿 = (𝒙(1), 𝒙(2), … , 𝒙(𝑁)) 

associates with a 𝑁  dimensional vector 𝒁 = (𝑍(𝒙(1)), 𝑍(𝒙(2)), … , 𝑍(𝒙(𝑁)))  that has a 

multivariate Gaussian distribution: 

 𝒁 ∼ 𝒩(𝝁𝒁, 𝑪): 𝝁𝒁 = [
𝜇𝑍(𝒙

(1))

⋮
𝜇𝑍(𝒙

(𝑁))
] , 𝑪 = [

𝐾(𝒙(1), 𝒙(1)) ⋯ 𝐾(𝒙(1), 𝒙(𝑁))

⋮ ⋱ ⋮
𝐾(𝒙(𝑁), 𝒙(1)) ⋯ 𝐾(𝒙(𝑁), 𝒙(𝑁))

] (2.2) 

If we want to calculate the probability distribution function at some other points for 

example  {𝑿∗, 𝒁∗} , while the information of  (𝑿, 𝒁)  is given, the normal distribution of 

vector 𝒁∗  can be written as 𝒁∗ ∼ 𝒩(𝝁𝒁
∗, 𝑪∗∗) where  𝑪∗∗ =  𝐾(𝑿∗, 𝑿∗) . So that the joint 

probability function of 𝒀 and 𝒁∗ is: 

 [
𝒁
𝒁∗
] ∼ 𝒩 ([

𝝁𝒁
𝝁𝒁

∗] , [
𝑪 𝑪∗

𝑪∗𝑻 𝑪∗∗
]) (2.3) 

where 𝑪∗ =  𝐾(𝑿, 𝑿∗) . Therefore the conditional distribution of 𝒁∗  given 𝒁  can be 

expressed as (Brochu, Cora, & De Freitas, 2010): 

 𝑝(𝒁∗|𝒁) ∼ 𝒩(𝝁𝒁
∗ + 𝑪∗𝑇𝑪−1(𝒁 − 𝝁𝒁), 𝑪

∗∗ − 𝑪∗𝑻𝑪−1𝑪∗) (2.4) 

From the definition of GP, we know that the realization of the GP is determined by the 

mean and the kernel (covariance). Therefore, how to select a fitted kernel which can 

represent the structure present in the data is one of the main issue. Since covariance 

functions are closed under addition and multiplication, that is to say, if 𝐶1 and 𝐶2 are two 

covariance functions of random process with a common parameter set, then 𝛼1𝐶1 + 𝛼2𝐶2 

and 𝐶1 ∙ 𝐶2 are also covariance when 𝛼1, 𝛼2 > 0 (Todorovic, 2012). With this property, it 

is possible to create sophisticated structures through combining them (Duvenaud, 

Nickisch, & Rasmussen, 2011). Several functions have been proposed for this modeling 

(Kleijnen, 2009). Examples can be found in next table where 𝜎𝑌
2 is the variance of 𝑌 and 

𝜃, 𝜃′are the parameters. 

Table 2.1. Examples of covariance models for GP correlation model 

Covariance function Expression 

Exponential 𝜎𝑌
2𝑒𝑥𝑝(− (‖𝒅 − 𝒅′‖) 𝜃⁄ ) 

Power Exponential 𝜎𝑌
2𝑒𝑥𝑝(−((‖𝒅 − 𝒅′‖) 𝜃⁄ )𝜃

′
) where 0 < 𝜃′ ≤ 2 

Squared Exponential 𝜎𝑌
2𝑒𝑥𝑝(− (‖𝒅 − 𝒅′‖) (2𝜃2)⁄ ) 
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Note that the values of all the functions introduced in the table above depend only on 

the Euclidean distance between their input vectors, this is called stationary. A stationary 

covariance function is said isotropic or homogeneous if it depends only on the Euclidean 

norm, otherwise it is called anisotropic. 

Kriging is based on the assumption that a function 𝑦:ℝ𝑝 → ℝ  is a realisation of a 

conditional Gaussian process 𝑌 and can be decomposed into two parts: a deterministic 

part 𝜇𝑌(𝒙) and a stochastic part 𝜖(𝒙): 

 𝑌(𝒙) = 𝜇𝑌(𝒙) + 𝑍(𝒙) (2.5) 

where 𝒙 ∈ ℝ𝑝 , 𝜇𝑌 represents the regression model also called kriging trend of the process, 

𝑍 is a stationary Gaussian process 𝑍~𝐺𝑃(0, 𝐾), the expectation is zero 𝐸[𝑍(𝒙)] = 0, and 

the variance 𝜎𝑌
2 ∈ ℝ exist and the covariance is: 

 𝐶𝑜𝑣(𝑍(𝒙), 𝑍(𝒙′)) = 𝐾(𝒙, 𝒙′) = 𝜎𝑌
2𝑅(𝒙, 𝒙′) (2.6) 

where 𝑅 is a correlation function which depends only on the distance of the two points, 

and the covariance function can be chosen from the Table 2.1. And with the properties of 

covariance 𝐾(𝒙, 𝒙) = 𝜎𝑌
2 and 𝐾(𝒙, 𝒙′) = 𝐾(𝒙′, 𝒙), we can also know that 

 {
𝑅(𝒙, 𝒙) = 1

𝑅(𝒙, 𝒙′) = 𝑅(𝒙′, 𝒙)
 (2.7) 

In general, the value of a variable at a point is correlated to the values of the 

neighboring points, so that the establishment of a kriging model is to approximate the 

stochastic process 𝑌  at an unknown point 𝒙∗  by a linear combination of the observed 

values. We assume that the expectation �̂�  of the realizations of this process is an 

approximation of the function 𝑌. Suppose that 𝑿 = {𝒙(1), 𝒙(2), … , 𝒙(𝑁)} is a set of 𝑁 design 

sample points and 𝒀 = {𝑦(𝒙(1)), 𝑦(𝒙(2)), … , 𝑦(𝒙(𝑁))} are the function values. The linear 

combination can be written as the following form: 

 �̂�(𝒙∗) = ∑ 𝜆𝑖(𝒙
∗)𝑦(𝒙(𝑖))𝑁

𝑖=1  (2.8) 

where  𝜆𝑖 are the respective weights which need to be estimated. 

To estimate the average trend, the least square method can be used (Hansen, 2007). 

According to the Gauss-Markov theorem (Kruskal, 1968), in a linear regression model, the 

ordinary least squares is the Best Linear Unbiased Predictor (BLUP) only if it is unbiased 

and also it has the lowest mean square error of the estimate among all others. The 

properties can be written as: 

1. 𝐸(𝑌(𝒙) − �̂�(𝒙)) = 0; 

2. 𝑉𝑎𝑟(𝑌(𝒙) − �̂�(𝒙)) =  𝐸 [(𝑌(𝒙) − �̂�(𝒙))
2
] = �̂�2(𝒙) , if this variance does not 

depend on the chosen point, that means error terms have the same variance 

called homoscedasticity 
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So the purpose is to find the estimator that can minimize the variance: 

 �̂�2(𝒙∗) = 𝑉𝑎𝑟(𝑌(𝒙∗) − �̂�(𝒙∗)) = 𝑉𝑎𝑟(�̂�(𝒙∗)) + 𝑉𝑎𝑟(𝑌(𝒙∗)) − 2𝐶𝑜𝑣(�̂�(𝒙∗), 𝑌(𝒙∗)) 

= 𝑉𝑎𝑟 (∑𝜆𝑖(𝒙
∗)𝑦𝑖

𝑁

𝑖=1

) + 𝑉𝑎𝑟(𝑌(𝒙∗)) − 2𝐶𝑜𝑣 (∑𝜆𝑖(𝒙
∗)𝑦𝑖

𝑁

𝑖=1

, 𝑌(𝒙∗)) 

= ∑ ∑ 𝐶𝑜𝑣(𝜆𝑖(𝒙
∗)𝑦𝑖, 𝜆𝑗(𝒙

∗)𝑦𝑗) + 𝑉𝑎𝑟(𝑌(𝒙
∗)) −𝑁

𝑗=1
𝑁
𝑖=1 2∑ 𝜆𝑖(𝒙

∗)𝐶𝑜𝑣(𝑦𝑖 , 𝑌(𝒙
∗))𝑁

𝑖=1  (2.9) 

where 𝑦𝑖 = 𝑦(𝒙
(𝒊)) and it is also unbiased: 

 𝐸[�̂�(𝒙∗) − 𝑌(𝒙∗)] = ∑ 𝜆𝑖(𝒙
∗)𝜇𝑌(𝒙

(𝑖)) − 𝜇𝑌(𝒙
∗) = 0𝑁

𝑖=1  (2.10) 

There are three most well-known Kriging methods, their difference lies in the form of 

average trend 𝜇𝑌(𝒙).  

 Simple Kriging (SK): the trend is a known constant,  

 Ordinary Kriging (OK): the trend is an unknown constant, 𝜇𝑌(𝒙) =  𝜇𝑌. 

 Universal Kriging (UK): the trend is an unknown function, it can be written as a 

linear or quadratic combination of 𝑞  known functions  𝑡𝑖 , weighted with the 

coefficients 𝛽𝑖 ∈ ℝ: 𝜇𝑌(𝒙) = ∑ 𝛽𝑖
𝑞
𝑖=1 𝑡𝑖(𝒙). 

Each type of Kriging will be present in following sections. 

1.2.2 Simple Kriging (SK) 

For Simple Kriging, the trend is a known constant, 𝜇𝑌(𝒙) =  0 for example. The purpose 

of Kriging is to use the existing samples to observe a realization of a stationary Gaussian 

process 𝑌(𝒅∗), so for Simple Kriging, with the help of deduction in (Lophaven, 2002), the 

prediction mean and variance at this point 𝒅∗ are: 

 
�̂�(𝒙∗) = 𝜇𝑌 + 𝒄(𝒙

∗)𝑇𝑪−1(𝒚 − 𝟏𝜇𝑌) = 𝜇𝑌 + 𝒓(𝒙
∗)𝑇𝑹−1(𝑦 − 𝟏𝜇𝑌)

�̂�2(𝒙∗) = 𝜎𝑌
2 − 𝒄(𝒙∗)𝑇𝑪−1𝒄(𝒙∗) = 𝜎𝑌

2(1 − 𝒓(𝒙∗)𝑇𝑹−1𝒓(𝒙∗))
 (2.11) 

where 𝒄(𝒙∗) = (𝑲(𝒙∗, 𝒙(𝟏)), … ,𝑲(𝒙∗, 𝒙(𝑵)))
𝑻

, 𝟏  is a 𝑝 × 1  vector of ones, 𝒓(𝒙∗)  is the 

vector of correlations between the point 𝒙∗  and the 𝑁  other sample points, 𝑟𝑖(𝒙
∗) =

𝑅(𝒙∗, 𝒙(𝑖)) and 𝑹 is a 𝑁 × 𝑁 correlation matrix between sample points, 𝑅𝑖𝑗 = 𝑅(𝒙
(𝑖), 𝒙(𝑗)).  

With the correlation function and the moments of 𝑌, we can estimate �̂�(𝒅∗) and the 

mean square error �̂�2(𝒙∗).  

Moreover, if 𝒙∗ is at any exist sample point, that means 𝒙∗ = 𝒙(𝒊), then the mean square 

error turns to 0. In this situation, 𝒓(𝒙(𝒊)) is equal to 𝑹𝑖• which signifies the 𝑖th column of 

the correlation matrix, the term 𝒓(𝒙(𝒊))
𝑇
𝑹−1 is equal to 𝒆𝑖 = (0,… ,0,1,0, … ,0) in which the 

𝑖th element is 1. So that 
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�̂�(𝒙(𝒊)) = 𝜇𝑌 + (𝑦(𝒙

(𝒊)) − 𝜇𝑌) = 𝑦(𝒙(𝒊))

�̂�2(𝒙(𝒊)) = 𝜎𝑌
2 (1 − 𝒆𝑖𝒓(𝒙

(𝒊))) = 𝜎𝑌
2(1 − 𝑅𝑖𝑖) = 0

 (2.12) 

according to Equation (2.7). 

1.2.3 Ordinary Kriging (OK) 

Here in this type, the average trend is constant but unknown, so that the Kriging model 

can be written as: 

 �̂�(𝒙∗) = 𝜇𝑌 + 𝑍(𝒙) (2.13) 

With the condition of unbiased approximation mentioned before in Equation (2.10), 

we can deduce that: 

 ∑ 𝜆𝑖(𝒙
∗)𝜇𝑌 − 𝜇𝑌 = 0𝑁

𝑖=1 ⟺∑ 𝜆𝑖(𝒙
∗)𝑁

𝑖=1 = 1 (2.14) 

As our purpose is to minimize Equation (2.9) with the equality constraint Equation 

(2.10), so that we introduce a Lagrange multiplier 𝜐and let the partial derivative of 𝜆𝑖 

equals to 0. The problem proposed by Equation (2.9) and (2.14) can be reformed as: 

ℒ𝒅∗(𝜆, 𝜈) =∑∑𝜆𝑖(𝒙
∗)

𝑁

𝑗=1

𝜆𝑗(𝒙
∗)𝐾(𝒙(𝑖), 𝒙(𝑗))

𝑁

𝑖=1

+ 𝑉𝑎𝑟(𝑌(𝒙∗)) 

 −2∑ 𝜆𝑖(𝒙
∗)𝐾(𝒙(𝑖), 𝒙∗) + 2𝜈(∑ 𝜆𝑖(𝒙

∗)𝑁
𝑖=1 − 1)𝑁

𝑖=1  (2.15) 

where the last term in right hand side equals to 0. And to cancel the partial derivative with 

respect to each component 𝜆𝑖  easily, we multiply by 2 before deriving. The following 

equations can be obtained after derivation: 

 {
2∑ 𝜆𝑖(𝒙

∗)𝐾(𝒙(𝑖), 𝒙(𝑗))𝑁
𝑖=1 − 2𝐾(𝒙(𝑖), 𝒙∗) + 2𝜈 = 0

∑ 𝜆𝑖(𝒙
∗)𝑁

𝑖=1 = 1
 (2.16) 

For an estimate of the function at the point 𝒙∗, the weight values 𝜆𝑖 can be obtained by 

solving the problem reformulated by Equation (2.16): 

 

[
 
 
 
𝐾(𝒙(1), 𝒙(1)) ⋯

⋮ ⋱

𝐾(𝒙(1), 𝒙(𝑁)) 1

⋮ ⋮
𝐾(𝒙(𝑁), 𝒙(1)) ⋯

1 ⋯

𝐾(𝒙(𝑁), 𝒙(𝑁)) 1

1 0]
 
 
 
[

𝜆1(𝒙
∗)

⋮
𝜆𝑁(𝒙

∗)
𝜈

] =

[
 
 
 
𝐾(𝒙(1), 𝒙∗)

⋮
𝐾(𝒙(𝑁), 𝒙∗)

1 ]
 
 
 
 (2.17) 

𝐾 can be calculated from the chosen correlation function in Table 2.1 and after calculation 

of 𝜆𝑖, Equation (2.8) could be used to obtain the value of estimation.  

1.2.4 Universal Kriging (UK) 

In the universal Kriging model, 
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 �̂�(𝒙∗) = ∑ 𝛽𝑖
𝑞
𝑖=1 𝑡𝑖(𝒙) + 𝑍(𝒙) (2.18) 

 For the simplicity, the former equation can be written in matrix form as: 

 �̂� = 𝑻𝒃 + 𝒁 (2.19) 

where  𝒃 = [𝛽1, … , 𝛽𝑝]
𝑇

, 𝑻  is a 𝑁 × 𝑞  matrix whose 𝑖𝑗 th element is 𝑡𝑗(𝒙
(𝑖))  and 𝒁 =

[𝑍(𝒙(1)), … , 𝑍(𝒙(𝑁))]
𝑇

 satisfies 𝒁~𝒩(0, 𝑪) , 𝑪  is the matrix of covariance as shown in 

Equation (2.2). For the positive definite matrix  𝑪−1 , there must exist a matrix 𝑩  that 

satisfy 𝑪−1 = 𝑩𝑇𝑩. We modify Equation (2.19) by multiplying it by 𝑩 for both sides: 

 𝑩�̂� = 𝑩𝑻𝒃 + 𝑩𝒁 (2.20) 

With this model, the term 𝑩𝒁 is uncorrelated because that: 

 𝐶𝑜𝑣(𝑩𝒁) = 𝑩𝐶𝑜𝑣(𝒁)𝑩𝑇 = 𝑩𝑩−1(𝑩−1)𝑇𝑩𝑇 = 𝑰 (2.21) 

This is proved by using the fact: 

 𝐶𝑜𝑣(𝒁) = 𝑪 = 𝑩−1(𝑩−1)𝑻 (2.22) 

Thus the model in Equation (2.20) is consistent with the Gauss-Markov theorem. So 

finally with the generalized least squares method (Hansen, 2007), the coefficients are 

estimated by: 

 �̂� = ((𝑩𝑻)𝑇𝑩𝑻)−1(𝑩𝑻)𝑇𝑩𝒁 = (𝑻𝑇𝑪𝑻)−1𝑻𝑇𝑪−𝟏𝒁 =
𝑻𝑇𝑹−𝟏𝒁

𝑻𝑇𝑹−𝟏𝑻
 (2.23) 

Other unknown parameters �̂�2  and 𝜽 can be estimated by the maximum likelihood 

method, the likelihood function is the probability density of the observations: 

 𝐿(𝜽, �̂�2|�̂�) = 𝑃(�̂�|𝜽, �̂�2) =
1

(2𝜋)𝒏/𝟐|𝑪|𝟏/𝟐
𝑒𝑥𝑝 (−

(�̂�−𝟏𝜇)𝑇𝑪−1(�̂�−𝟏𝜇)

2
) (2.24) 

 ln 𝐿(𝜃, �̂�2|�̂�) = −
𝑛

2
ln(2𝜋) −

1

2
ln|𝑪| −

1

2
(�̂� − 𝟏𝜇)𝑇𝑪−1(�̂� − 𝟏𝜇) (2.25) 

where |𝑪| is the determinant of the covariance matrix.  

Then the estimator of variance �̂�2 is: 

 �̂�2 =
1

𝑛
(�̂� − 𝟏𝜇)𝑇 𝑹−1(�̂� − 𝟏𝜇) (2.26) 

Substituting �̂�2 on Equation (2.25): 

 2 ln 𝐿(𝜽|�̂�) = −𝑛 ln(2𝜋) − 𝑛 ln �̂�2 − ln|𝑹| − 𝑛 (2.27) 

where the parameter 𝜽 is estimated by maximizing the equation above subject to the 

constraint that all the elements of 𝜽 should be positive. 

The peculiarity of the kriging model is that the prediction error at any point can be also 

provided. This error is accessible from the estimation of the variance of the stochastic 

process.  
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In order to implement the Kriging meta-model of the objective function and also the 

constraints in design optimization problem with heavy models, a Matlab toolbox called 

DACE is used. The manual (Lophaven, 2002) and (Sacks et al., 1989) explain how to obtain 

the parameters using the toolbox in detail.  

1.3 Meta-model based design optimization 

In general, almost all the meta-model based design optimization strategies can be 

classified in three types: 

 Sequential strategy 

 Adaptive strategy 

 Criterion-based strategy 

For the first type, the meta-model building part and the optimization part are separated 

and the meta-model is not modified during the optimization process. The process of this 

strategy is shown in the Fig 2.1. A global meta-model is built by using the evaluation 

information on chosen samples and an optional validation step is made after the building. 

Once the meta-model is created, no more change will be made and it is used to substitute 

the expensive black-box model during the optimization process. The main advantage of 

this strategy is that it is simple to apply as the meta-model building part is separated to 

the optimization part. However, as there is no feedback, the accuracy depends on the 

initial samples, so that the optimization process may fail to find the global optimum 

solution if the choice of initial samples is not good or the number of sample points is not 

enough. 

 
Fig. 2.1. Sequential strategy process 
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The second strategy is an adaptive approach: there is a feedback from optimization 

part to meta-model building part in order to adapt the approximation. First, the initial 

meta-model is built as in the sequential strategy, then once the optimum is found after 

optimization, this optimum is added to the samples and expensive model is run at this 

point then the meta-model is rebuilt. This loop will continue until the stop criterion is 

satisfied. The new meta-model integrate more information given by the optimum of each 

iteration so that the accuracy can be improved iteration by iteration. However, this 

strategy can only improve the local accuracy, in fact it has high dependence on the success 

of finding the global optimum by the first iteration, if a local optimum is found at first, then 

all the following added points may locate around this local optimum and it fails to 

converge.  When many design variables are considered or the fine model is highly 

nonlinear, obtaining high global accuracy meta-model with a limited budget of fine model 

evaluations is not possible. The process of this strategy is in the Fig 2.2. 

 
Fig. 2.2. Adaptive strategy process 

The last strategy is called adaptive criterion-based strategy: this type of strategy is 

specially proposed to solve the problems that are highly nonlinear or has many variables. 

As explained before in the second strategy, it is difficult to achieve a global accuracy for 

this type of problem. In order to reduce the number of evaluations, this approach 

combines the exploration with exploitations by introducing an Infill Searching Criterion 

(ISC). Its difference with the second strategy is that this method does not seek to reach a 

high global accuracy of the meta-model. Instead, it will consider a balance between 

searching the optimum and improving the accuracy. All the solutions found by ISC in each 

iteration is a best combination of searching the optimal solution and exploration of the 

design space, then the optimization process will be guided by the ISC. This strategy is the 
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most complex but also the most efficient as it can improve the solutions with a reduced 

number of evaluations with the fine model. However owing to the complexity, as the 

rebuilding of meta-model is nested with ISC, if the searching analysis fails, the designer 

needs to adjust the simulation models parameters and resume the optimization process 

manually. Also, most of the ISC adds only one solution into the samples at each iteration, 

this may make the process to take lots of iterations. The process of this strategy is shown 

in Fig 2.3.  

 
Fig. 2.3. Adaptive criterion-based strategy process 

This strategy is chosen due to its adaptation with highly nonlinear and expensive fine 

models. The most common used method in this type of strategy is Efficient Global 

Optimization (EGO) and it will be presented in next section. 

1.4 Efficient Global Optimization (EGO) 

The EGO proposed by (Jones, Schonlau, & Welch, 1998) uses a kriging meta-model to 

approximate the real function from a set of observations, and it adds new points 

sequentially  by maximize the Expected Improvement (EI) of the function which is 

considered as the infill criterion. The process of EGO is shown in the following figure. After 

the meta-model is built, EGO adds one point to the existing samples set by maximizing the 

value of EI, then the parameters of covariance functions are re-estimated and the Kriging 

model is updated. This process continues until a stopping criterion is satisfied. Usually the 

stopping criterion is that the maximum value of EI is small enough. (Chaudhuri & Haftka, 
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2013) discusses the stopping criteria used in surrogate model based optimization. In this 

manuscript, we use a fixed small positive value to stop the algorithm. 

 
Fig. 2.4. The process of EGO 

EGO iteratively creates a design point with the criterion EI which is particularly 

popular due to its advantages. First, it has the capability of exploration and exploitation 

at the same time, and it could lead the optimization to the global optimum effectively 

(Locatelli, 1997). Second, it does not have any parameters that needs to be adjusted. And 

last, with EI there is no need to choose another stopping criterion as it can itself be used 

as a stopping criterion: if the maximum value of EI is small enough, the optimization could 

be terminated (Forrester & Jones, 2008).  

Expected Improvement indicates the amount of improvement we could expect if the 

function is evaluated at the point. So, searching the maximum EI can help us to find the 

point that has the most probability of improving the current solution. 
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We define the initial design sample set as  𝑿 = [𝒙(1), … , 𝒙(𝑁)]
𝑇

, and the evaluation 

function set at 𝑿 is 𝒀 = [𝑦(𝒙(1)), … , 𝑦(𝒙(𝑁))]
𝑇

, then the function value 𝑦(𝒙) at some other 

point 𝒙 is treated as the realization of a normally distributed random variable with mean 

�̂�(𝒙) and standard deviation �̂�(𝒙) given by the kriging predictor built by information of 

(𝑿, 𝒀). Suppose 𝑦𝑚𝑖𝑛 = min
 
𝒀, the current best objective function value of all samples, the 

improvement is defined as: 

 𝐼 = max
 
{0, 𝑦𝑚𝑖𝑛 − �̂�(𝒙)} (2.28) 

The Expected Improvement is then calculated by: 

 𝐸𝐼(𝒙) = {
[𝑦𝑚𝑖𝑛 − �̂�(𝒙)]𝛷(𝑧(𝒙)) + �̂�(𝒙)𝜙(𝑧(𝒙)) if �̂�(𝒙) > 0

0 if �̂�(𝒙) = 0
 (2.29) 

where  𝑧(𝒙) = (𝑦𝑚𝑖𝑛 − �̂�(𝒙)) �̂�(𝒙)⁄ . Here Φ  and 𝜙  denote the cumulative distribution 

function (CDF) and probability density function (PDF) of standard normal distribution 

respectively. The design point that has the maximum value of EI will be taken as the next 

infill sample: 

 𝒙(𝑁+1) = argmax
 
𝐸𝐼(𝒙) (2.30) 

From the Equation (2.27) we could see that EI is a non-negative function and the two 

terms seek for exploitation and exploration respectively. And the EI value will augment in 

two conditions: 

 �̂�(𝒙) is smaller than 𝑦𝑚𝑖𝑛 thus the first term value increases 

 �̂�(𝒙) has a large value so that the second term augment 

It means that the first term aims to find a possible smaller value at the local position, 

while the second term contributes in increase the accuracy and global searching. 

Besides the mentioned advantages of EI, there is a drawback because designer could 

not control the respective weights of exploration and exploitation. In order to tackle this 

difficulty, many ISC based on EI are proposed. These modified criteria will be presented 

in next section. 

1.5 Infill Searching Criteria (ISC) 

(Schonlau, 1997) introduced a Generalized Expected Improvement (GEI) criterion. It 

adds an additional non-negative integer parameter 𝑔 in the improvement definition: 

 𝐼𝑔 = max
 
{0, (𝑦𝑚𝑖𝑛 − �̂�(𝒙))

𝑔
} (2.31) 

Therefore, the expression of GEI changes to: 
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 𝐸𝐼𝑔(𝒙) = �̂�𝑔(𝒙)∑ (−1)𝑖
𝑔!

𝑖!(𝑔−𝑖)!
𝑧(𝒅)

𝑔
𝑖=0

𝑔−𝑖
𝑇𝑖 (2.32) 

where 𝑇𝑖 = −𝜙(𝑧(𝒅))𝑧(𝒅)
𝑖−1 + (𝑖 − 1)𝑇𝑖−2 , starting with 𝑇0 = 𝛷(𝑧(𝒅))  and 𝑇1 =

−𝜙(𝑧(𝒅)). 

With the increasing of  𝑔 , the method moves from local exploitation to global 

exploration. In particularly if 𝑔 = 1 the criterion turns out to be the initial EI. The impact 

of the parameter 𝑔 is shown in the Fig 2.5. In the figures, the solid line above is the real 

function while the dotted one is the meta-model, the curve below is the value of GEI. For 

𝑔 = 1 the GEI function rises significantly in two parts, left part has high model uncertainty 

while the right region has a higher probability of finding a better solution. Then if 𝑔 grows 

larger, the left part value becomes greater than the right part, thus the contribution of 

second term in Equation (2.29) becomes more and more significant. 

 
Fig. 2.5. The impact of different 𝑔 values in GEI (Sasena, 2002) 

(Sasena, 2002) introduced two varietal ISC, the first one aims to locate points that 

maximize the probability of being no greater than 𝑦𝑚𝑖𝑛, which is computed as: 
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 𝑊𝐵1(𝒙) = 𝛷 (
(𝑦𝑚𝑖𝑛−�̂�(𝒙))

�̂�(𝒙)
 ) (2.33) 

Notice that this formulation is exactly the same as that 𝑔 = 0 for GEI. Therefore, this 

ISC focuses extremely on local searching. In fact it has the same idea as Probability 

Improvement (PI) (Jones, 2001). PI method focuses on the probability that the value 𝑦(𝒙) 

is smaller than a target value 𝑌𝑇 . It seeks for the point that has the highest probability that 

the function is less than the target 𝑌𝑇: 

 𝑃(𝑦(𝒙) ≤ 𝑌𝑇) = 𝐹𝑦(𝑇) = ∫ 𝑓𝑦(𝑡)𝑑𝑡
𝑇

−∞
 (2.34) 

where 𝐹𝑦  and 𝑓𝑦  denote the CDF and PDF of 𝑦  respectively. So the probability of 

improvement can be calculated as: 

 𝑃𝐼(𝒙) = 𝑃(𝑦(𝒙) ≤ 𝑌𝑇) = ∫
1

𝑠(𝒙)√2𝜋
𝑒
−(𝑡−�̂�(𝒙))

2

2�̂�2(𝒙)
𝑇

−∞
𝑑𝑡 (2.35) 

with 𝑢(𝒙) = 𝑌𝑇 − �̂�(𝒙) �̂�(𝒙)⁄ , then  

 𝑃𝐼(𝒙) = ∫
1

√2𝜋
𝑒
−𝑢2

2

𝑌𝑇−�̂�(𝒙)

�̂�(𝒙)
−∞

𝑑𝑢 = [𝛷(𝑢)]−∞

𝑌𝑇−�̂�(𝒙)

�̂�(𝒙) = 𝛷 (
𝑌𝑇−�̂�(𝒙)

�̂�(𝒙)
) (2.36) 

The target 𝑌𝑇  is chosen by the designer and we can find that if  𝑌𝑇 = 𝑦𝑚𝑖𝑛 , the 

expression of PI is the same as 𝑊𝐵1. 

The other ISC introduced by (Sasena, 2002) attempts to minimize the expected value 

of the smallest observation once the infill samples have been added: 

 𝑊𝐵2(𝒙) = {
�̂�(𝒙) + [𝑦𝑚𝑖𝑛 − �̂�(𝒙)]𝛷(𝑧(𝒙)) + �̂�(𝒙)𝜙(𝑧(𝒙)) if �̂�(𝒙) > 0

0 if �̂�(𝒙) = 0
 (2.37) 

It is very similar to the EI function, the only difference is that 𝑊𝐵2 has an additional 

first term that is the predicted value at the interest point. The advantage of this criterion 

is that it gives more weight to local search than EI. Also for EI function, it needs an initial 

sample point in the security domain to calculate 𝑦𝑚𝑖𝑛  if there are constraints in the 

optimization. So a new problem arises if the constraints are complex and the security 

domain is small and/or discrete, there may be no point satisfying the constraints in the 

initial sample set, thus the EI function may fail to start as it always gives 0. 𝑊𝐵2 can avoid 

this problem as it adds an extra term and avoids the values return to 0. 

(Sóbester, Leary, & Keane, 2005) proposed a Weighted Expected Improvement (WEI) 

criterion that can control the balance between local and global search by changing the 

value of the weight factor from 0 to 1. In order to distinguish with the weight parameter 

in formulations, here in ISC it is noted as 𝛼 ∈ [0,1]: 

 𝑊𝐸𝐼(𝒙) = {
𝛼[𝑦𝑚𝑖𝑛 − �̂�(𝒙)]𝛷(𝑧(𝒙)) + (1 − 𝛼)�̂�(𝒙)𝜙(𝑧(𝒙)) if �̂�(𝒙) > 0

0 if �̂�(𝒙) = 0
 (2.38) 
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A variant of the WEI was proposed by (Xiao, Rotaru, & Sykulski, 2012, 2013). It is called 

Adaptive Weighted Expected Improvement (AWEI) and uses two independent weight 

factors 𝛼1 and 𝛼2: 

 𝐴𝑊𝐸𝐼(𝒙) = {
𝛼1[𝑦𝑚𝑖𝑛 − �̂�(𝒙)]𝛷(𝑧(𝒙)) + 𝛼2�̂�(𝒙)𝜙(𝑧(𝒙)) if �̂�(𝒙) > 0

0 if �̂�(𝒙) = 0
 (2.39) 

The factors can be calculated automatically at each iteration using a system of 

numerical rewards. Two potential rewards are calculated based on the average value of 

the mean square error (MSE) of all predicted points, representing the potential amount of 

rewards resulting from each of the two possible actions, exploration and exploitation, 

respectively. The determined rewards are then used to update the values of the two 

weighting coefficients. However, this approach is difficult to implement as it requires 

more parameters to be tuned. 

(Lizotte, Greiner, & Schuurmans, 2012) introduced a modified EI by adding another 

parameter 𝜉 ≥ 0: 

 𝐸𝐼𝜉(𝒙) = {
[𝑦𝑚𝑖𝑛 − 𝜉 − �̂�(𝒙)]𝛷(𝑧(𝒙)) + �̂�(𝒙)𝜙(𝑧(𝒙)) if �̂�(𝒙) > 0

0 if �̂�(𝒙) = 0
 (2.40) 

The principle of this criterion is the same as  𝑊𝐵2 : with higher values of the 

parameters 𝜉, the search pays more attention to exploration. 

All the mentioned ISC above are adapted for objective function thus they can only solve 

unconstrained optimization problems which rarely occurs in real applications (Sasena, 

Papalambros, & Goovaerts, 2001). (Schonlau, 1997) analyses numbers of constraint 

handling techniques with applications and in this manuscript the most representative 

ones will be presented. 

The first type is penalty function: a large negative constant is added to the expected 

improvement as a penalty in order to restrain it from choosing points inside infeasible 

domain (Sasena, Papalambros, & Goovaerts, 2000; Sasena, 2002).  

Considering EI as example, in order to account for constraints, the formula should 

change like: 

 𝐸𝐼𝑃(𝒙) = {
𝐸𝐼(𝒙) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 if 𝑔(𝒙) > 0

𝐸𝐼(𝒙) if 𝑔(𝒙) ≤ 0
 (2.41) 

However, this approach has a main drawback that it is difficult to choose an 

appropriate value of the penalty.  

(Schonlau, 1997) proposed a probability method that consists in multiplying the value 

of EI by the probability that the point is feasible, so that the magnitude of EI will reduce 

and if the point has a very low likelihood of feasibility the value will tend toward 0: 
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 𝑃𝐹𝑖(𝒙) = 𝑃(𝑔𝑖(𝒙) ≤ 0) = 𝛷 (−
�̂�𝑖(𝒙)

�̂�𝑔𝑖
(𝒙)
) (2.42) 

where �̂�𝑖(𝒙)  is the predictor of the 𝑖 th constraint 𝑔𝑖  at the point 𝒙  and �̂�𝑔𝑖
(𝒙)  is the 

standard deviation of predictor �̂�𝑖. Then the product is: 

 𝐸𝐼(𝒙) × 𝑃𝐹(𝒙) = 𝐸𝐼(𝒙)∏ 𝑃𝐹𝑖(𝒙)
𝑚
𝑖=1  (2.43) 

𝑚 is the number of constraints. 

There is a disadvantage for this approach because the influence of the probability on 

the criterion value is too strong so that if the optimum lies in the region around the limit-

state, the algorithm may not be able to find it as its value is very small. 

Another method which can handle constraints is called Expected violation (EV) 

proposed by (Audet, Denni, Moore, Booker, & Frank, 2000): 

 𝐸𝑉(𝒙) = {
[�̂�(𝒙) − 0]𝛷 (

�̂�(𝒙)−0

�̂�𝑔(𝒙)
) + �̂�𝑔(𝒙)𝜙 (

�̂�(𝒙)−0

�̂�𝑔(𝒙)
) if �̂�𝑔(𝒙) > 0

0 if �̂�𝑔(𝒙) = 0
 (2.44) 

Similar to EI, EV only changes the current minimum to the limit 0, the value of EV 

increases in the region where the constraints are likely to be non-violated or there is great 

uncertainty about the constraint models. If EV is less than a given threshold 𝑡𝐸𝑉 , the point 

can be considered as feasible. Then the new optimization problem is defined as: 

 
max
𝒙
𝐸𝐼(𝒙)

𝑠. 𝑡.  𝐸𝑉(𝒙) ≤ 𝑡𝐸𝑉
 (2.45) 

The fourth method is Constrained EI (CEI) proposed by (Sasena, Papalambros, & 

Goovaerts, 2001), it uses the Kriging meta-model of constraints directly thus the 

optimization problem turns to: 

 
max
𝒙
𝐸𝐼(𝒙)

𝑠. 𝑡.  �̂�(𝒙) ≤ 0
 (2.46) 

(Sasena, 2002) makes a comparison between EV, PF and CEI. Results show that CEI is 

the most accurate one. 

Besides these approaches, (Bichon, Eldred, Swiler, Mahadevan, & McFarland, 2008) 

proposed another function called Expected Feasibility (EF) function to provide an 

indication of how well the true value of the response is expected to satisfy the constraints: 

 𝐸𝐹(�̂�(𝒙)) = ∫ [𝜀 − |�̂�(𝒙)|]𝑓�̂�𝑑𝑔
𝜀

−𝜀
 (2.47) 

where 𝑓�̂�  is the PDF of �̂�(𝒙)  and 𝜀  is proportional to the standard deviation of the 

predictor (𝜀 ∝ 𝑠𝑔). The former equation can be calculated as: 
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 𝐸𝐹(�̂�(𝒙)) = �̂� [2𝛷 (−
�̂�(𝒙)

�̂�𝑔(𝒙)
) − 𝛷 (

−𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
) − 𝛷 (

𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
)] 

 −�̂�𝑔 [2𝜙 (−
�̂�(𝒙)

�̂�𝑔(𝒙)
) − 𝜙 (

−𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
) − 𝜙 (

𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
)] + 𝜀 [𝛷 (

𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
) − 𝛷 (

−𝜀−�̂�(𝒙)

�̂�𝑔(𝒙)
)] (2.48) 

EF balances also between exploration and exploitation like EI and it is used in the 

method called Efficient Global Reliability Analysis (EGRA) proposed also by (Bichon et al., 

2008). The main process of EGRA is similar to EGO and usually the value of 𝜀 is chosen 

as 2�̂�𝑔.  

The advantage of this methods is that it considers the constraints independently 

without the objective function, so it can obtain a very accurate meta-model for constraints. 

However, the main drawback is also attributed to this separation. As it only considers the 

meta-model of constraints, thus it divides the original optimization problem into several 

sub-problems and after each meta-model of constraints have been built, other methods 

or ISC are still needed to create meta-model of objective functions and solve the design 

optimization. The total process therefore becomes a tedious work. 

2 Adaptive methods for optimization with 

uncertainty 
As it can be seen from the state of the art, adaptive methods and infill searching criteria 

for deterministic design optimization problems are quite developed. Nevertheless for the 

robust or/and reliability design optimization problems, these techniques may not be 

completely suitable as the formulations changed. Hence, for considering the uncertainties, 

new strategies and ISC for adaptive methods should be studied. This part will detail the 

methods including the choice of the ISC and the positioning of sample enrichments in the 

optimization process for each aforementioned type of optimization with uncertainty. 

2.1 Adaptive Kriging based WCO 

There are much less authors who payed attention to WCO with adaptive criterion-

based kriging method compared to other categories of optimization with uncertainty like 

RBDO. One of the most difficult question is how to predict the worst-case for every sample 

point. The worst-case optimization problem is usually referred to as a minimax problem, 

so there is an extra optimization sub-problem.  

(Zhou & Zhang, 2010) proposed to build meta-models for the worst-case directly. That 

is, after initial sample set has been chosen  𝒅𝑠𝑎𝑚𝑝 = [𝒅1, … , 𝒅𝑛]  where 𝑛  denotes the 

number of samples and 𝒅 is the mean of random variable 𝒙. Traditional WCO or worst-

vertex-based WCO method is used to evaluate the worst-case of each initial point. 

Response sets of worst-case objective and constraints values 𝑭𝒘 and 𝑮𝒘 are filled with 

the worst-case found around each sample, then meta-models of worst-case functions 𝑓𝑤 
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and �̂�𝑤 are built to solve the minimization problem. The solution of optimization 𝒅𝑛𝑒𝑤 

will be added to the sample set and evaluated to rebuild the meta-models until 

convergence. Fig 2.6 presents the flowchart of this method.  

  
Fig. 2.6. The flowchart of the mentioned approach from (Zhou & Zhang, 2010) 

However, for searching the worst-case value of each sample, more than one evaluation 

is needed. For example, if WWCO is used, then two bounds at the uncertainty set of each 

dimension need to be evaluated, thus 2𝑝 + 1 evaluations for the current design point 

where 𝑝 is the dimension of input variables. So 𝑛 samples bring 𝑛 × (2𝑝 + 1) evaluations.  

Moreover, the worst-case value of the objective function or constraints at any given 

point depends not only on the information given by that point but also on the neighboring 

points. Thus, the nonlinearity and non-derivative of the worst-case solution is higher than 

initial objective or constraints due to its implicit form. If we build the meta-models 

directly for the worst-case solution, the precision may not be accurate enough. So that this 

approach takes more evaluations than expected and could not achieve a high precision as 

expected. 

(Ur Rehman & Langelaar, 2017) investigated another approach which can handle the 

problems with constraints. This algorithm is called Efficient Global Robust Optimization 
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under Implementation Error (EGRO-IE). Although it has the name of robust, it uses worst-

case optimization in essence. In the similar way to all other adaptive criterion-based 

meta-model methods, it starts with the construction of a meta-model based on initial 

samples and responses. However, the key points of this approach are: a reference 

optimum 𝑟  on meta-model is used to replace the best value 𝑦𝑚𝑖𝑛  in original EI, for 

calculating 𝑟, an optimization with meta-model is used: 

 
𝑟 = 𝑚𝑖𝑛

𝒅∈ℝ𝑝
𝑚𝑎𝑥
𝝃∈𝑈(𝒅)

𝑓(𝒅 + 𝝃)

𝑠. 𝑡.  𝑚𝑎𝑥
𝝃∈𝑈(𝒅)

�̂�(𝒅 + 𝝃) + 𝑘�̂�𝑔(𝒅 + 𝝃) ≤ 0
 (2.49) 

where 𝑈(𝒅)  is the uncertainty set around 𝒅  defined as: 𝑈(𝒅) =

{𝝃 ∈ ℝ𝑝|𝒅 − 𝑘𝝈 ≤ 𝝃 ≤ 𝒅 + 𝑘𝝈}, 𝝈 is the standard deviation of uncertain variables with 

normal distribution. The parameter 𝑘  is the confidence level as in Chapter 1, it is a 

measure of how conservative we want to be with respect to the meta-model prediction 

error, larger values indicate more conservative.  

Then a modified EI and PF criterion is applied, and for each location at which this 

criterion needs to be computed, a worst-case Kriging prediction with respect to the 

uncertainty set is evaluated on the meta-model. The highest value for the worst-case 

Kriging prediction over the reference robust optimum is chosen as the new location of 

sample. The modified criterion EI multiplied by PF is calculated as follows: 

 
𝐸𝐼𝑤 = 𝐸[𝐼𝑤(𝒅)] = (𝑟 − 𝑓𝑚𝑎𝑥)𝛷 (

𝑟−�̂�𝑚𝑎𝑥

�̂�
) + 𝑠𝜙 (

𝑟−�̂�𝑚𝑎𝑥

�̂�
)

𝑃𝐹𝑤 = 𝑃[𝑔𝑤(𝒅) ≤ 𝟎] = 𝛷 (−
�̂�𝑚𝑎𝑥

�̂�𝑔
)

 (2.50) 

The worst-case Kriging predictions of objective function and constraints with respect 

to the uncertainties in design variable space are: 

 𝑓𝑚𝑎𝑥(𝒅) = max
𝝃∈𝑈(𝒅)

𝑓(𝒅 + 𝝃) (2.51) 

 �̂�𝑚𝑎𝑥(𝒅) = max
𝝃∈𝑼(𝒅)

�̂�(𝒅 + 𝝃) (2.52) 

The flowchart is in Fig 2.7. The advantage of this method is that we use meta-model to 

find the worst case for each design point so as to reduce the number of evaluations. 

However, it is not accurate enough as PF has a great influence when the searching point 

is close to the limit-states. In addition, the final solution is chosen as 𝑟, but this value is 

calculated by the meta-models, which means that this point has not been evaluated and 

the accuracy is further reduced. 
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Fig. 2.7. The flowchart of worst-case optimization with constrained problems 

2.1.1 New infill strategy for WCO 

All the mentioned methods for WCO have their own drawbacks. Thus, a new strategy 

which can balance the speed of convergence and the precision is needed. In this 

manuscript two strategies are proposed. 

First, as discussed above, meta-models built on worst-case objective function and 

constraints directly are not accurate enough due to the fact that they cannot consider all 

the information belonging to not only the current design point but also to the 

neighborhood. Thus, we decide to use meta-models based on original deterministic 

objective and constraints, then use them to predict the worst-case. 
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Besides, for ISC, (Li, Rotaru, & Sykulski, 2016) proposed a new criterion to add infill 

points at each iteration called the Worst-Case Expected Improvement (WCEI) for 

unconstrained problems. This expected improvement measure is recalculated from 

deterministic EI by taking the minimal value with the worst-case region of that design 

point: 

 𝑊𝐶𝐸𝐼(𝒅) = max
 𝒅

{min
𝝃 
[𝐸𝐼(𝒅 + 𝝃)] , 0} (2.53) 

where 𝝃 is a set of points located within the neighborhood region 𝑼(𝒅) of the unknown 

point 𝒅. With this ISC, new infill points are selected and evaluated at each iteration. After 

the stopping criterion is satisfied, the process finishes and exports the solution of the last 

iteration as the worst-case optimum. The stopping criterion is: 

 𝑊𝐶𝐸𝐼𝑘(𝒅) −𝑊𝐶𝐸𝐼𝑘−1(𝒅) < 𝜀 (2.54) 

where 𝑊𝐶𝐸𝐼𝑘(𝒅) is the value of ISC in 𝑘th iteration and 𝜀 is a very small positive number 

decided by designer. Moreover, for the constrained problems, since criterion PF works 

not so good, we still consider �̂�(𝒅𝑤) = 𝑚𝑎𝑥
𝝃∈𝑈(𝒅)

�̂�(𝝃) as constraints.  

The second strategy proposed in this manuscript uses also the meta-models for 

original objective function and constraints as the former one. However, the ISC and the 

strategy for adding infill points are changed. After the meta-models of original objective 

and constraints are built with initial samples, a modified EI which can be adjusted to 

WWCO formulation with a little change: 

 𝐸𝐼𝑤(𝒅) = (𝑓𝑤𝑚𝑖𝑛 − 𝑓𝑤(𝒅))Φ(
�̂�𝑤𝑚𝑖𝑛−�̂�𝑤

(𝒅)

�̂�(𝒅)
)+𝑠(𝒅)𝜙 (

�̂�𝑤𝑚𝑖𝑛−�̂�𝑤
(𝒅)

�̂�(𝒅)
) (2.55) 

where 𝑓𝑤𝑚𝑖𝑛  is the current worst-case value given by WWCO using meta-model, �̂�(𝒅) is 

the MSE of meta-model 𝑓 at design point 𝒅. 𝑓𝑤 is the prediction of worst-case of objective 

calculated by: 

 𝑓𝑤(𝒅) = max
𝝃∈𝑈(𝒅)

𝑓(𝒅 + 𝝃) (2.56) 

However, when WWCO is used, only the vertex are taken into account, if the function 

changes greatly in the area 𝑼, obviously this method is not sufficient to find the correct 

worst-case solution (Song, Li, Rotaru, & Sykulski, 2014). Thus, the gradient index GI is also 

introduced in our ISC for the purpose of finding a more credible solution: 

 𝐺𝐼(𝒅) = max
𝑖=1,…,𝑝

(
𝜕�̂�

𝜕𝑑𝑖
) (2.57) 

So that the final ISC will be the product of EI and GI. 

The same example with 2 variables and 3 constraints in the former chapter will be used 

after to test these two approaches.  
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2.1.2 Mathematical example 

The optimization problem of the example is presented in Equations (1.64) and (1.65) 

in Chapter 1 section 2. Following two figures present the results for above two methods. 

Colored contours are for deterministic objective function. Blue dotted lines and red dotted 

lines are deterministic constraints 𝑔𝑖(𝒅) = 0 (𝑖 = 1,2,3)  and worst-case 

constraints 𝑔𝑤,𝑖(𝒅) = max
𝝃∈𝑈(𝒅)

𝑔𝑖(𝒅 + 𝝃) = 0, respectively. Black solid lines and green solid 

lines are meta-models of deterministic constraints and worst-case constraints, 

respectively. Green points present 20 initial samples, red points are added during 

iterations. The reliability index 𝛽𝑡 is considered as 2. 

 
Fig. 2.8. The final iteration of meta-models of worst-case using WCEI 

From the Fig 2.8, it can be seen that the meta-models of constraints seems not very 

accurate especially at the positions far from the optimum, it is easy to understand this 

phenomenon because we focus on searching the worst-case optimum and improving the 

accuracy of meta-model at the same time. The new infill points are located where the 

minimal EI around the target point is the largest, and the parts far from optimum are not 

very interesting.  There are 8 iterations before convergence: except the three first points, 

the other 5 points added are located in almost the same location. 
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Fig. 2.9. The final iteration of meta-models of worst-case using EI and GI 

Then from the Fig 2.9 and Table 2.2 it can be seen that worst-case using EI and GI 

method finds a worst-case optimum less accurate than the former one. After convergence, 

the meta-model and mathematic model of original objective function still have a visible 

difference. Moreover, in Table 2.2, results of WWCO using mathematical model without 

kriging are also given for comparing. It is obvious that the method using WCEI could find 

a more accurate solution than using 𝐸𝐼 × 𝐺𝐼 while both of them have almost the same 

number of evaluations. 

Table 2.2. Results of mathematical example using different strategies of WCO 

ISC 
Number of 

iterations 

Number of 

evaluations 
Optimal solution 

𝐸𝐼 × 𝐺𝐼 7 20+7 [2.2585; 2.3904] 

𝑊𝐶𝐸𝐼 8 20+8 [2.2700; 2.4051] 

Mathematical model 

without kriging 
-- 121 [2.2664; 2.4006] 
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2.2 Adaptive Kriging based RDO 

As RDO aims to find a minimal variance, the robust optimum no longer stays around 

the deterministic optimum, additionally a deterministic local optimum may become the 

robust global solution.  

So the most straightforward but not efficient method is to consider separately the part 

of meta-model construction and the part of RDO. For example, (Lee & Kang, 2006; Lee & 

Park, 2006) proposed to build surrogate approximation models for initial objective 

function and constraints by evaluating some chosen samples. Then, a RDO problem is 

solved using these surrogate models with the mean and variance are computed by Monte-

Carlo simulations. 

With enough initial samples we can get a meta-model with high precision in all domain 

and we will not miss any local optima which are candidates of the robust solution. 

However, the shortcoming is that this method depends greatly on the initial samples as 

the kriging model is not adaptive. If the number of samples is too large, the computing 

time is excessive and if the number is too small, it may not obtain an accurate meta-model 

and lead to a wrong result.  

In order to handle this drawback, adaptive criterion based kriging methods for RDO 

are proposed. Two types of methods are proposed to get RDO in tune with adaptive 

kriging: the first one adjust the ISC to the robust problem, and the other one is to build 

meta-models for robust objective and constraints. 

For the first type, the roughest approach is using the classical EI directly on meta-model 

of original objective function. The only difference with (Lee & Park, 2006) is that this 

approach adds an ISC, so that it may need less sample points in total to get an accurate 

meta-model. However, the RDO problem is still separated into two parts, the first part 

using EGO to obtain a meta-model with enough precision, the second part use RDO for 

searching the robust optimum. Moreover, as the robust objective and constraints are very 

different with deterministic ones, it does not make any sense to treat random variables in 

the same way as deterministic variables in the evaluation of the expected improvement 

(Jurecka, 2007).  

It seems that only adjusting the ISC to original problem with random variables for RDO 

could not satisfy our aim of mixing the meta-model construction and optimization 

together. Fortunately, we have another type of method, that is building a new meta-model 

for robust objective function and constraints so that ISC can work on it. 

As the goal is to find a robust optimum that is insensitive to uncertainties in the design 

process, the robustness measure such as the standard deviation of performance is 

evaluated and minimized to achieve this goal directly (Doltsinis, Kang, & Cheng, 2005). 

However, as one main feature of meta-models is their smoothing properties, local 

sensitivities obtained from a global model are in general not reliable (Lönn, Jergeus, & 
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Nilsson, 2013). (David, Fyllingen, & Nilsson, 2008; Sun et al., 2011) presented an approach 

to robust optimization by using two meta-models: one is for the mean and other is for the 

standard deviation of the initial objective function (these articles consider only the 

problem without constraints). The authors use Artificial Neural Network (ANN) to 

approximate the mean and standard deviation of the responses over the design variables’ 

space. Then, the formulation of robust optimization mentioned in the previous chapter 

can be used to find a solution. If convergence is achieved then the algorithm stops 

otherwise the meta-model of mean and standard deviation are rebuilt by choosing other 

samples to build new meta-models. The flowchart is shown in Fig 2.10. 

 
Fig. 2.10. Flowchart for the methodology used in (David, Fyllingen & Nilssona, 2008) 

However, new design points are created at each iteration randomly and the meta-

models are rebuilt each time without considering the previous designs. This wastes the 

previous evaluations and is time consuming.  

In order to choose new designs more efficiently and associate the new infill points with 

previous samples, ISC should be used. (Shimoyama, Sato, Jeong, & Obayashi, 2012) 

proposed an ISC called Expected Hyper Volume Improvement (EHVI) which could be used 

for multi-objective optimizations. EHVI focuses on the improvement of the front of non-

dominated solutions in the objective functions’ space whose axis are the mean and 

standard deviation. Nevertheless, the new infill points are just forecasts of new global 
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optima may achieve from existing solutions and they are not a real solution found by 

calculation, thus, the so-called global optima may be not correct and lead the process to a 

wrong direction. 

To accelerate the process and find a more suitable infill point, new strategy need to be 

proposed for RDO problem. 

2.2.1 New infill strategy for RDO 

In this chapter, a new method of RDO with adaptive criterion-based Kriging meta-

model is proposed. As has been explained, several difficulties arise if we focus on using 

ISC with meta-models of original objective and constraints when random variables are 

taken into account.  

In order to combine the meta-model building and robust optimization together, ISC 

should act on the robust objective and/or constraints directly. Thus, the goal is to find an 

infill point that is most promising with respect to the robustness criterion instead of 

focusing on the improvement on the surrogate models.  

With this purpose, the means 𝜇𝑓 , 𝝁𝒈  and standard deviations 𝜎𝑓 , 𝝈𝒈  of original 

objective function and constraints are used as response surfaces and the meta-models are 

constructed for them straightforwardly. Then, robust objective function and constraints 

can be built from these surrogate moments.  

The flowchart can be seen from Fig 2.11. First after some initial points are selected, the 

approaches presented in Chapter 1 like Monte Carlo simulation or Taylor based method 

can be used to calculate the moments of original objective function and constraints. For 

example, if we use the first order Taylor based method, the moments can be calculated as: 

 {
�̂�𝑓 = 𝑓(𝒅)

�̂�𝑓
2 = ∑ (

𝜕𝑓(𝒅)

𝜕𝑑𝑖
)
2

𝜎𝑖
2𝑝

𝑖=1

 (2.58) 

 {

�̂�𝑔𝑗 = 𝑔𝑗(𝒅)

�̂�𝑔𝑗
2 = ∑ (

𝜕𝑔𝑗(𝒅)

𝜕𝑑𝑖
)
2

𝜎𝑖
2𝑝

𝑖=1

 (2.59) 

where 𝑝  is the dimension of input parameter, 𝑑𝑖  is the 𝑖 th element of mean of input 

parameter, 𝜎𝑖  is the 𝑖th element of standard deviation of input parameter 𝑔𝑗  is the 𝑗th 

constraint.  

Then, the kriging meta-model of these moments are constructed in order to create the 

robust formulations. For example, Formulation 7 in Table 1.3 in previous chapter: 

 {
𝑓𝑟(𝒅) = 𝜔

�̂�𝑓(𝒅)

|𝜇𝑓0|
+ (1 − 𝜔)

�̂�𝑓(𝒅)

𝜎𝑓0

�̂�𝑟 = �̂�𝒈(𝒅) + 𝑘�̂�𝒈(𝒅)
 (2.60) 
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where 𝜇𝑓0 and 𝜎𝑓0 can be chosen as the moments calculated with the initial samples. 

 
Fig. 2.11. Flowchart for constructing meta-models for moments and create robust 

formulation 

This part is almost the same with the first iteration of the mentioned method proposed 

by (David et al., 2008), the only two differences are that we use uncertainty propagation 

to calculate the moments and use kriging to build meta-model.  

Although there are two response surfaces: mean and standard deviation, they are not 

involved in the optimization problem directly. Only the robust objective function and 

constraints are used within the RDO problem. ISC can act on the problem straightly and 

ensures that the added sample points focus on finding the robust solution and increasing 

the accuracy of meta-model in the same time. So, there is no need to consider criteria like 

EHVI to forecast the next sample point by considering the Pareto front of mean and 

standard deviation.  

With this strategy, a more suitable ISC is needed. We first consider only the objective 

function and a Modified Weighted EI is proposed. It is a variation of the Weighted EI (WEI) 

criterion proposed in (Sóbester et al., 2005). WEI seems to be more suitable as it adds 

weights into EI expression to balance exploration and intensification. Thus, we can pay 

more attention to searching the robust solution than increasing the accuracy for the meta-

model by changing the weight.  



122 
 

 W𝐸𝐼 = {
𝛼(𝑓𝑚𝑖𝑛 − 𝑓)𝛷(𝑧) + (1 − 𝛼)𝑠𝑓𝜙(𝑧) if �̂�𝑓 > 0

0 if �̂�𝑓 = 0
 (2.61) 

where 𝛼 is the weight factor, 𝑧(𝒅) = (𝑓𝑚𝑖𝑛 − 𝑓(𝒅)) �̂�(𝒅)⁄ . Small value of weight prevents 

WEI from converging to a local minimum. However, in constrained optimization, both EI 

and WEI require an initial sampling inside the security domain to start the improvement. 

This condition is quite difficult to satisfy for some complicated problems as their security 

domains may be small and sometimes discontinuous. To avoid this issue, a Modified WEI 

(MWEI) combined with the surrogate objective function is proposed: 

 MW𝐸𝐼 = W𝐸𝐼 − 𝛼𝑓 (2.62) 

In order to better understand the effects of ω, the same example as in (Xiao et al., 2013) 

is used and results for different values of weight are shown in Table 2.3. LM means local 

minimum and GM means global minimum. Thus, for searching the global optimum, the 

weight is typically taken equal to 0.1 as it provides to a global optimum with less 

iterations. 

Table 2.3. Result of different value of weight 

Value of 

weight 

Number of 

iteration 

Minimum found 

 by meta-model 

Exact value of the 

minimum 

1 9 -302.5256 -300.5446 (LM) 

0.8 9 -302.5248 -300.5446 (LM) 

0.5 9 -302.5240 -300.5446 (LM) 

0.2 22 -421.0057 -418.9827 (GM) 

0.1 13 -420.9068 -418.9825 (GM) 

0 fails   

 

Therefore, to adjust MWEI to RDO problem,  𝑓𝑟 is used to replace 𝑓: 

 MW𝐸𝐼𝑓𝑟 = {
𝛼 ((𝑓𝑟𝑚𝑖𝑛 − 𝑓𝑟)𝛷(𝑧𝑓𝑟) − 𝑓𝑟) + (1 − 𝛼)𝑠𝑓𝑟𝜙(𝑧𝑓𝑟) if �̂�𝑓𝑟 > 0

0 if �̂�𝑓𝑟 = 0
 (2.63) 

where 𝑓𝑟𝑚𝑖𝑛  is the current minimal value of robust objective, 𝑠𝑓𝑟  is the MSE of 𝑓𝑟 , 𝑧𝑓𝑟 =

(𝑓𝑟𝑚𝑖𝑛 − 𝑓𝑟) �̂�𝑓𝑟⁄ . 

For the constraints, as has been discussed in state of the art and adaptive kriging based 

WCO method, the meta-model of constraints themselves is more accurate, so in robust 

optimization, we also use robust constraints without making any changes. In the same 

way as objective function, mean 𝝁𝒈 and standard deviation 𝝈𝒈 of constraints are taken as 

responses surfaces. Thus, the robust constraints with meta-model are written as: 

 �̂�𝒓 = �̂�𝒈 + 𝑘�̂�𝒈 (2.64) 
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Then our purpose is to find the point which could maximize the value of MWEI with 

the robust constraint: 

 

max
𝑑
MW𝐸𝐼𝑓𝑟(𝒅)

𝑠. 𝑡. �̂�𝒓(𝒅) < 0

𝒅𝐿 + 𝑘𝜎 ≤ 𝒅 ≤ 𝒅𝑈 − 𝑘𝜎

 (2.65) 

where 𝒅𝐿 and 𝒅𝑈  denote the lower and upper bounds of 𝒅, 𝑘 is the confidence level. 

The process of this strategy is shown in the following figure. Then, the same 

mathematic example with two variables and three constrains will be used here to assess 

the efficiency of this method. 

 
Fig. 2.12. The flowchart of proposed RDO algorithm with meta-model 
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However, this strategy needs a great number of evaluations in order to compute the 

moments. During the uncertainty propagation, neither the Taylor expansion nor Monte 

Carlo simulation can get sufficient information within one evaluation. The former method 

needs to calculate the gradient and/or hessian information, the latter one needs 

frequently 106 samples which seems impossible for the heavy models. 

For the purpose of reducing the number of evaluations especial when the model is too 

heavy, we decide to create another meta-model for the original objective function and 

constraints. Thus, after the initial samples have been chosen and evaluated, meta-models 

𝑓 and �̂� are built. With this first layer of meta-model, uncertainty propagation methods 

can be used to calculate the requisite moments without taken too much time. Also using 

first order Taylor based method for example, the calculation of moments change to: 

 {
�̂�𝑓 = 𝑓(𝒅)

�̂�𝑓
2 = ∑ (

𝜕�̂�(𝒅)

𝜕𝑑𝑖
)
2

𝜎𝑖
2𝑝

𝑖=1

 (2.66) 

 {

�̂�𝑔𝑗 = �̂�𝑗(𝒅)

�̂�𝑔𝑗
2 = ∑ (

𝜕�̂�𝑗(𝒅)

𝜕𝑑𝑖
)
2

𝜎𝑖
2𝑝

𝑖=1

 (2.67) 

Then the second layer of meta-models: the means �̂�𝑓 , �̂�𝒈  and standard deviations 

�̂�𝑓 , �̂�𝒈 are built. Once the robust formulation is created by these surrogate moments, the 

left part is the same as the former method. This modified method is called double-layer 

method as it requires two kriging models in different usages: one for calculate the 

moments and the other to create the robust formulation. As a contrast, the former method 

is called single-layer method. So, the flowchart of this double-layer method changes to: 
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Fig. 2.13. The flowchart of proposed double-layer kriging RDO algorithm 

2.2.2 Mathematical example 

The two above algorithms are compared on the mathematical model as shown below 

in the figures. Formulation 7 in Table 1.3 in Chapter 1 is used here as an example: 



126 
 

 𝑓𝑟(𝒅) = 𝜔
𝜇𝑓(𝒅)

|𝜇𝑓0|
+ (1 − 𝜔)

𝜎𝑓(𝒅)

𝜎𝑓0  
 (2.68) 

The weight 𝜔 of the robust formulation is chosen as 0.5 at first and the means and 

standard deviations are calculated by the first order Taylor expansion. 𝜇𝑓0 and 𝜎𝑓0 can be 

obtained by any initial sample, here for comparison, we fix them with the values 

calculated by the point [3.5; 5]. 

Fig. 2.14 is the meta-models and samples with single-layer kriging, and Fig. 2.15 is with 

double-layer kriging. Both approaches starts with 20 random initial samples. In the 

figures, colored contours are for initial objective function, blue dotted lines are for the 

initial constraints and black solid lines denote meta-models of robust constraints. Green 

points are the 20 initial samples to build the first meta-models, red points are added in 

each iterations. The cyan lines in the figure 2.15 are the limit-state of initial constraints 

computed by the meta-models. 

 
Fig. 2.14. Final iteration of adaptive single-layer kriging based RDO with 𝜔 = 0.5 
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Fig. 2.15. Final iteration of adaptive double-layer kriging based RDO with 𝜔 = 0.5 

Table 2.4. Result of adaptive kriging based RDO with different value of weight 

Method 
Number of 

iterations 

Number of 

evaluations 

Optimum found with 

meta-model 

Optimum found with 

mathematic model 

Single-layer kriging 4 20 + 12 × 4 [2.3523; 2.1565] 
[2.3524; 2.1568] 

Double-layer kriging 6 20 + 6 [2.3523; 2.1562] 

 

From the above table it can be seen that double-layer kriging method can reduce the 

number of evaluations compared to single-layer kriging method, but the optimum found 

is further from the optimum found with mathematic model. It is reasonable since two 

layers of meta-model bring one more approximation in the system and increase the error. 

However, with this example, the difference of optima found by these two methods is small 

and the lost accuracy is acceptable. Moreover, in this example, only first order Taylor 

expansion is used, if the second derivative is calculated also or the Monte Carlo simulation 

is introduced to calculate the moments, it is foreseeable that the optima will be more 

precise and also the gap of evaluations numbers between these two approaches will be 

further widened. 
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In order to check the ability of finding the robust solution with different requirements, 

𝜔 = 0 and 𝜔 = 1 are also tested with dual-kriging method. The meta-models and samples 

are shown in the following figures and the table presents the numerical results.  

Table 2.5. Result of double-layer kriging based RDO with different value of weight 

Value of 

weight 

Number of 

evaluations 

Optimum found with 

meta-model 

Optimum found with 

mathematic model 

1 5 [2.3497; 2.1673] [2.3524; 2.1568] 

0.5 6 [2.3523; 2.1562] [2.3524; 2.1568] 

0 2 [1.5842; 8.2851] [1.5828; 8.3685] 

 

As can be seen from the figures and table, this approach can get a quite accurate 

solution with a small number of evaluations. Besides, it can adjust the focus of searching 

by the weight parameter. If the requirement prefers to have a smaller mean value, then 

the weight is close to 1. On the contrary, if the requirement prefers to have a smaller 

standard deviation value, the weight is close to 0.  

 

Fig. 2.16. Final iteration of adaptive double-layer kriging based RDO with 𝜔 = 0 
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Fig. 2.17. Final iteration of adaptive double-layer kriging based RDO with 𝜔 = 1 

2.3 Adaptive Kriging based RBDO 

For Kriging based RBDO, the strategy is very different from RDO. Attaining a highly 

accurate meta-model for the global design space is however not necessary, nor desired 

for the RBDO methods. Instead of wasting computational effort for sampling the non-

optimal zones of the design space, the focus should be on promising areas with a high 

chance of detaining the optima. Therefore, the idea of the strategy is to simultaneously 

seek the optimal solution (exploitation) while improving the global prediction accuracy 

of the meta-model (exploration). 

In addition, with the aim of searching the global deterministic optimum, locating the 

global optimum is more important than improving the accuracy of the kriging model. 

However as EI is highly multimodal, a local minimum is often found. To be sure to find the 

global solution, more attention should be paid on the infill criterion. Thus, the MWEI 

criterion present in section 2.2.1 in this Chapter could be used here also as we can adjust 

the searching process to pay more attention to finding global deterministic optimum by 

changing the value of weight. As the advantages of MWEI has been explained before, it 
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will not be detailed here and for each type of RBDO method, new strategies will be 

presented in following parts.  

2.3.1 Infill Strategies for Double-loop method 

Double-loop method like Performance Measure Approach (PMA) (Tu, Choi, & Park, 

1999) has a nested structure: The outer loop seeks for the optimum and the inner loop 

analyzes the reliability by searching the Most Performance Target Points (MPTPs) by 

solving an optimization problem. 

There are two places where ISC can be introduced to improve the accuracy of the 

kriging model: Outer loop and inner loop. As outer loop is an optimization with inequality 

constraints, the criterion MWEI and the meta-models of constraints can be used. 

 
𝒅𝑘 = argmax

𝒅
𝑀𝑊𝐸𝐼𝑓(𝒅)

𝑠. 𝑡.  �̂�(𝒙𝑘) ≤ 0
 (2.69) 

where 𝒅𝑘  is the optimum found in 𝑘th iteration, �̂�(𝒙𝑘) is the predictor of the maximal 

performance measurement for constraint calculated in the inner loop. 

For the inner loop, EI is used directly with the original constraint because this last is an 

explicit function of design variables.  

 
𝒙𝑘 = argmax

𝒙
𝐸𝐼𝑔(𝒙)

𝑠. 𝑡.  ‖(𝒙 − 𝒅) 𝜎⁄ ‖ = 𝛽𝑡
 (2.70) 

where 𝛽𝑡 is the target index of reliability depending on the chosen probability of failure, 

and 𝜎 is the standard deviation of the random variables 𝑋. Meanwhile as the inner loop 

intents to maximize the performance subject to the target reliability constraint, the 

chosen best value is the maximum among all samples on the hypersphere and the sign 

before g is opposite than the one before f. 

 𝐸𝐼𝑔(𝒙) = {
[�̂�(𝒙) − 𝑔𝑚𝑎𝑥]𝛷(𝑧𝑔) + �̂�𝑔(𝒙)𝜙(𝑧𝑔) if �̂�𝑔 > 0

0 if �̂�𝑔 = 0
 (2.71) 

where 𝑧𝑔 = [�̂�(𝑥) − 𝑔𝑚𝑎𝑥] �̂�𝑔(𝒙)⁄ ,  𝑔𝑚𝑎𝑥  is the maximum sampled constraint value on the 

hypersphere at the current iteration. Whereas a satisfied 𝑔𝑚𝑎𝑥  may not exist at the 

beginning, it is initialized with 𝑔(𝒅) to be sure that there exist points on the hypersphere 

with greater values. After one iteration, a solution of Equation 2.53 is found and 𝑔𝑚𝑎𝑥 is 

set to �̂�(𝒙∗). 

However, as the two loops are nested, the enrichment in inner loop may bring out 

thousands of model evaluations. To test it, two strategies are proposed: the first one 

(PMA1) adds new samples only inside the outer loop, whereas the second (PMA2) 

enriches inside both the outer and inner loops. 
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2.3.2 Infill Strategies for Single-loop method 

For Single loop method like Single Loop Approach (SLA) (Liang, Mourelatos, & Tu, 

2004), the main point is that the model in the inner loop is replaced by an approximation 

based on a first order Taylor expansion. The probability of failure is then approximated 

to avoid the numerous evaluations required for reliability analysis. Thus, MWEI is used 

straightly in this optimization with this time 𝑥𝑘  is calculated by an approximation: 

 𝒙𝑘 = 𝑑 + 𝛽𝑡
𝜎∘𝛻𝑔(𝒅 )

‖𝜎∘𝛻𝑔(𝒅 )‖
∘ 𝜎 (2.72) 

It is important to note that due to its first order approximation, the method itself has 

already loose some precision. Therefore, it is expected that with a surrogate model, the 

two approximations will be superposed and the accuracy will be further reduced. 

 
Fig. 2.18. The process of infill strategy with SLA 

2.3.3 Infill Strategies for Sequential method 

Sequential decoupled method like Sequential Optimization and Reliability Assessment 

(SORA) (Du & Chen, 2004) are based on a series of sequential deterministic optimizations 

and reliability assessments. The main point is to shift the boundaries of constraints to the 

feasible direction based on the reliability information obtained in the former iteration. 

The first deterministic optimization aims at searching the global optimum. Reliability 
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assessments are conducted after to locate the MPTP which corresponds to the desired 

probability of failure. Then new optimization is solved by taking into account the shift 

computed with MPTP. 

Three strategies are proposed. As the key point of deterministic optimization process 

is to find the global optimum, MWEI and meta-model of constraints are used for the first 

strategies (SORA1) to add new points during each deterministic optimization.  

 
𝒅𝑘+1 = argmax

𝒅
𝑀𝑊𝐸𝐼𝑓(𝒅)

𝑠. 𝑡.  �̂�(𝒅 − 𝒕𝑘+1) ≤ 0
 (2.73) 

where 𝑘 is the iteration number, 𝒕𝑘+1 denote the shift from the former 𝒅𝑘 to the MPTP 𝒙𝑘 

calculated by the reliability assessment for the constraint in the k-th iteration: 

 𝒕𝑘+1 = 𝒅𝑘 − 𝒙𝑘 (2.74) 

For the first iteration, the initial value of 𝒕 is 0. 

Then for reliability assessments, EI and the surrogate constraints for ISC sub-problems 

as Equation (2.46) are applied. The solutions on a hypersphere around 𝒅𝑘 are added to 

enrich points in order to find a more precise MPTP. This enrichment improves the 

accuracy of local constraint boundaries in the vicinity of the current design point. It is 

more rational and less expensive than improving the accuracy for the whole domain. 
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Fig. 2.19. The process of SORA1 strategy 

The second strategy (SORA2) differs from the first one by the fact that enrichment of 

the kriging models with MWEI criterion is made at first iteration only. For all other 

iterations, the deterministic optimization is made with the meta-models 𝑓 and �̂�. 

Indeed, it seems to be more important to add samples on the constraints boundaries 

and the solution of the optimization at all iterations except first one for which the solution 

is distant from those boundaries. So only the first iteration needs to use the ISC to insure 

that the global optimum can be found accurately by adding some new samples. 
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Fig. 2.20. The process of SORA2 strategy 

For the third strategy (SORA3), if the deterministic optimum found in k-th cycle is close 

to any of the other k-1 cycles, as the former reliability assessments have already added 

points in this region, the accuracy is considered to meet the requirement so there is no 

need to add new samples. A proximity criterion defined as in next expression can be 

introduced before each reliability assessment: 

 ‖(𝒅𝑘 − 𝒅𝑖)/𝜎‖ < 𝛽𝑡,   𝑖 = 1,… , 𝑘 − 1 (2.75) 
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where 𝒅𝑖  is the deterministic optimum found by the 𝑖th cycle. If the above criterion is 

satisfied, the meta-model will be used directly and only MPTP are evaluated. For the parts 

of deterministic optimization, it takes the same strategy as the second one. The flowchart 

of SORA3 is shown in Fig. 2.21. 

 
Fig. 2.21. The process of SORA3 strategy 
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2.3.4 Mathematical Example 

To assess the efficiency of adaptive kriging-based RBDO methods, also the analytical 

problem in (Dong-Wook Kim, Nak-Sun Choi, Choi, & Dong-Hun Kim, 2015) with two 

variables and three constraints is analyzed. Noting that the random variables comply with 

normal probabilistic distributions and the standard deviations are all equal to 0.3. Lower 

and upper bounds are 0 and 10 respectively for both variables. The target reliability index 

𝛽𝑡 is chosen as 2, so that the target probability of failure 𝑃𝑡 = Φ(−𝛽𝑡) = 2.28%. 

The results are given in Table 2.3 with an initial sampling of 20 points. The probability 

of failure 𝑃𝑓 is calculated by Monte-Carlo simulation with 106 samples. For comparison 

purpose, results given by RBDO methods with the original problem are also presented. All 

the iterative kriging-based RBDO methods lead to a reduced number of evaluations. SLA 

with kriging is not accurate enough, the maximum probability of failure is much greater 

than 𝑃𝑡  because of the approximation used to simplify the reliability analysis. As expected, 

PMA with infill during inner loop requires thousands of samples to evaluate. The other 

PMA strategy is faster but as it does not add samples in the vicinities of MPTP, the accuracy 

is not sufficient. Kriging-based SORA strategies lead to the best results and the third one 

is the most efficient. Fig. 2.22 shows the different iterations of SORA3, the contours are 

for objective function, dashed lines and solid lines present real objective or constraints 

and surrogate ones, respectively. 

Table 2.6. Result of mathematical example using different strategies or RBDO 

Strategy 
Number of 

evaluations 
Optimal solution 

Optimal 

value 

Maximal 

𝑃𝑓 (%) 

SLA (exact model) 165 [2.2512; 1.9677] -1.9953 2.32 

PMA/SORA (exact model) 3183/531 [2.2513; 1.9691] -1.9945 2.27 

SLA 26 [2.2466; 1.9617] -1.9996 2.59 

PMA1 29 [2.2494; 1.9649] -1.9972 2.44 

PMA2 1804 [2.2513; 1.9691] -1.9945 2.27 

SORA1/2/3 142/97/45 [2.2513; 1.9691] -1.9945 2.27 
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Fig. 2.22. The iterations of SORA3 for the mathematical example 

2.4 Adaptive Kriging based RBRDO 

This study is quite recent almost all the researches are in the last five to ten years. (Lai 

et al., 2016) proposed a sequential approximate strategy with Kriging meta-model for 

RBRDO. However the authors did not use any ISC, instead new points are selected as the 

solution of optimization with surrogate objective function and constraints only. Thus, the 

method does not guarantee that the added points can improve the accuracy of the meta-

model as much as possible or are the optimal solution of the meta-model. 

(Arsenyev, Duddeck, & Fischersworring-Bunk, 2015) decided to build two levels of 

meta-models. After evaluating the generated samples, the first level Kriging meta-model 

are fitted for the initial objective function and constraints. Then authors choose double-

loop methods to analyze the reliability and assess the robust objective function using 

Monte-Carlo sampling for each training point. Then, the second layer Kriging meta-model 

is fitted over the design space using robust objective values and constraint values at MPTP 

from PMA, which are now the deterministic constraints for the outer-loop optimizer. 

These surrogates share the points with the first layer surrogates which enforces 

simultaneous refinement of the approximations in the design space for both layers. The 
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EGO step with EI and EF as ISC is performed on the second level surrogate, searching for 

the promising points to minimize robust objective while satisfying reliability constraints. 

For each infill points found by EGO step, the values of the uncertain variables are 

determined to refine the surrogates in the uncertain subspace. In case of robust objective 

function, the point that maximizes the mean square error is selected. For the constraints, 

the PMA analysis is performed and if the predicted probability of constraint being active 

is higher than a threshold value, the obtained point is added to the constraint's training 

set. When all infill points for all GP surrogates are found and evaluated, the surrogates are 

refitted and the next iteration of the method is performed.  If highest EI of infill points for 

last two iterations is less than a threshold value, the iterations are stopped. The flowchart 

of the proposed methodology is: 

 
Fig. 2.23. Flowchart of the methodology proposed by (Arsenyev et al., 2015) 

However, in this approach, to build the second layer meta-model, each sample point 

will be treated with PMA and Monte-Carlo sampling method, thus augmenting the 

computational burden greatly. 

To simplify the methodology, new strategies are proposed in this chapter and as there 

are three types of method to analyze the reliability (double-loop, single-loop and 

decoupled sequential), each type of method with robust formulation of objective function 

will be tested to pick out the most efficient one. 
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2.4.1 New infill strategy for RBRDO 

As traditional RBRDO is the combination of RDO and RBDO, adaptive Kriging based 

RBRDO can also be combined with adaptive Kriging based RDO and RBDO. So that we use 

the strategies presented in the RBDO section and append the formulation introduced in 

previous chapter. 

First, for the single-loop method, adaptive kriging based SLA method presented in 

section 2.3.2 can be used, then for considering the robust objective function, double-layer 

kriging method presented in section 2.2.1 is also needed. One meta-model is for initial 

objective function, and the other surrogate the robust objective function with moments 

calculated by the first one. The flowchart is as follow: 

 
Fig. 2.24. Flowchart of the double-layer kriging based RBRDO using single-loop method 

Also, for the double-loop method, as has been discussed in section 2.3, the strategy 

PMA1 requires much less evaluations, as our main purpose is to decrease the 

computational burden for heavy models, so that PMA1 is chosen here to combine with 

double-layer kriging based RDO method. Thus, the enrichment only occurs in outer loop. 
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At last, for sequential decoupled method, SORA3 is the most efficient approach and is 

used with Normal-the-Best formulation here as an example to compare all the three 

mentioned methods. As in Chapter 1, the target 𝑓𝑡  is chosen as the minimum of DDO -

2.6266 as an ideal result which cannot be attained, and 𝜇𝑓0 , 𝜎𝑓0  are fixed as the values 

computed by the design point [3.5; 5]. 

2.4.2 Mathematical example 

Results for the mathematical example is shown in the following figures and table. 

Colored contours are for deterministic objective function, blue dotted lines are for 

deterministic constraints and black lines are meta-model of constraints. Green points 

present 20 initial samples, red points are added during iterations. The blue points in SORA 

present the maximum performance target points. 

 
Fig. 2.25. Final iteration of adaptive double-layer kriging based RBRDO with SLA 
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Fig. 2.26. Final iteration of adaptive double-layer kriging based RBRDO with PMA1 

From the results, it can be seen that SORA3 with double-layer kriging method takes the 

most time and SLA double-layer kriging strategy is not accurate enough. SORA3 gets the 

solution the closest to the one found by using the mathematical model without building a 

meta-model. However, for RBRDO the accuracy is reduced because of the double-layer 

kriging. The robust objective meta-model is built based on moments calculated by the 

other surrogate model, so that it lose some precision. 

Table 2.7. Result of mathematical example using different strategies of RBRDO 

Strategy 
Number of 

iterations 

Number of 

evaluations 
Optimal solution 

Double-layer kriging + SLA 3 20+3 [1.3539; 8.7980] 

Double-layer + PMA1 5 20+5 [1.3670; 8.5068] 

Double-layer + SORA3 5 20+31 [1.3672; 8.5042] 

Mathematical model -- 612 [1.3675; 8.5018] 
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Fig. 2.27. Final iteration of adaptive double-layer kriging based RBRDO with SORA3 

3 Conclusion 
This chapter mainly describes approaches of adaptive kriging based optimization with 

uncertainty for heavy models. This research topic is gaining importance during the last 

decades. Many researchers proposed their methods to reduce the computational burden 

but each method has its own limitation.  

We try to propose strategies that focus on where to add new samples and with which 

ISC for every different type of optimization with uncertainty. Although the suitable 

strategies for each type is disparate, the purposes are always trying to use meta-model to 

avoid time consuming evaluations and using adapted ISC to add new samples at the most 

needed positions. 

With a simple mathematical example, different strategies are tested in order to choose 

the most effective ones. 

For WCO, meta-models are built on the original objective function and constraints, then 

two criteria are proposed to estimate the worst-case values. After comparing their 
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solutions and numbers of evaluations, it can be seen that the one enrich with WCEI is more 

accurate.  

Then for RDO, as the calculations of moments of original objective and constraints need 

large amount of evaluations especially when simulation methods like Monte Carlo 

approach is used. So as to reduce the time consumption, double-layer kriging meta-model 

is proposed. The first layer is building surrogate models for original objective and 

constraints, then second layer meta-models of moments are built with the former layer, 

formulations and ISC like MWEI can be used with this estimated moments to solve the 

problem. Results of the mathematic example show that this strategy is faster than single-

layer meta-model method without losing much accuracy. 

Different approaches using SLA, PMA and SORA separately are proposed for RBDO. 

Among them, the strategy which uses MWEI for first deterministic optimization and a 

proximity criterion before reliability assessments is the most efficient one. 

For RBRDO, double-layer kriging method combines with SORA presents a good 

compromise between accuracy and speed of convergence.  

However, these methods are proposed for heavy models, a simple mathematical model 

cannot make too much sense. Thus in the next chapter, a more complex electromagnetic 

device that is a safety isolating transformer will be introduced and its analytical model 

and finite element model will both be used to compare these approaches. 
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Chapter 3: Transformer 

The safety transformer is one of the most used electrical devices thanks to the 

multiplicity of its various applications and its simple manufacture (Tran, 2009). This 

device exhibits other interesting features such as: 

 Multiphysics 

 Implicit equations 

 Highly constrained 

 Badly scaled design variables, objectives and constraints 

 Multimodal 

So as a typical electromagnetic device with all above difficulties, it is chosen in this 

manuscript to compare the efficiency of the former proposed methods. 

The device is a single-phase safety isolating transformer at 50/60Hz whose operation 

is reversible. The power ranges from a few dozens of volt-amperes to thousands of volt-

amperes. The primary side voltage can be 230V, 400V or maximum 690V, and the 

secondary side voltage can be 24V or 12V. This is a low power transformer designed for 

installation in electric cabinet.  

It is manufactured with grain-oriented E-I laminations. In order to reduce the eddy 

current losses, the magnetic circuit is laminated and consists of thin sheets stacked one 

on the other. These sheets are a ferromagnetic alloy of iron and silicon, which can work at 

a maximal induction up to 2.35T when the frequency is low. The thickness of a metal sheet 

is 0.33mm, 0.5mm or 0.65mm. The safety transformer respects the insulation 

temperature class E, that means the primary and secondary windings can withstand 

temperatures up to 120℃. 

The primary and secondary copper windings are wound around the frame surrounding 

the central core and each part of lamination is assembled on this frame as shown in Fig 

3.1. The primary winding is connected to the source and the secondary one is connected 

to the receiver. 

Models will be presented in details in the following sections and used with the former 

methods for fast and heavy models in the optimization problem. 
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Fig. 3.1. Structure of the safety transformer (Tran et al., 2007) 

1 Models 
Two models of the transformer are used in this manuscript: one is an analytic model 

based on equivalent circuit and the other is a finite element model. First, AM will be used 

to test the methods adapted to fast models in order to verify our conclusion in the first 

chapter. Then, only the methods adapted to heavy models will be tested on the FEM 

because it is too complex and time consuming to be used with methods for fast models. 

Finally, a conclusion including the optimization results for AM and FEM will be drawn at 

the end of this chapter. 

1.1 Analytic model 

The physical phenomena within the transformer are thermal, electric and magnetic. 

They are expressed in equations that are ranked using specific algorithms.  

There are some assumptions for AM: 

1. The induction in the iron core is uniformly distributed. 

2. No voltage drop due to the magnetizing current. 

3. The magnetic field in coils is vertical. 

4. The insulator between the core and the coils is in perfect contact with both parts. 

5. There is no thermal contact between the exterior coil and the magnetic circuit. 

6. There is no thermal exchange with the air trapped between the coils and the iron. 

7. There is no convection on the upper and lower sides of the coil. 

8. There is no temperature gradient in the copper and the iron. 

9. All surfaces have the same convection coefficient. 
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The first two assumptions are based on Kapp’s hypothesis (Seguier & Notelet, 1994). 

Without these two assumptions, the voltage drops caused by the passage of the 

magnetizing current in primary resistance will be taken into account, then the magneto-

electric model is shown as in Fig 3.2. 

 

Fig. 3.2. Transform equivalent of the magneto electric model (Tran, 2009) 

𝑛𝑖  is the number of turns for the coil, 𝐸𝑖  represents the electromotive force, 𝑙𝑖  is the 

leakage inductance, 𝑉𝑖 is the voltage, 𝑟𝑖 denotes the resistor. Index 𝑖 = 1,2 means that the 

parameter is related to the primary or secondary coil. 𝑅𝜇, 𝐿𝜇 are magnetizing resistor and 

inductance, 𝐼1, 𝐼2, 𝐼𝜇 are the primary, secondary and magnetizing currents. 

The maximal induction 𝐵𝑚 can be calculated by: 

 𝐵𝑚 =
1

4𝜋
∙ 𝐸1

√2

𝑛1∙𝑎∙𝑑∙𝑓
 (3.1) 

where 𝑓  is the frequency, 𝑎  is the width of the column of E-I lamination and 𝑑  is the 

thickness of the frame shown in Fig 3.1. 

This model leads to an implicit system of 21 equations, in order to simplify the system, 

Kapp’s hypothesis are introduced and the voltage drop is neglected.  

Then the magneto electric model can be transformed equivalently to the electrical 

diagram as follows: 
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Fig. 3.3. Transform equivalent of the magneto electric model with Kapp’s hypothesis 

(Tran, 2009) 

𝑉20  represents the voltage at no load,  𝑅2, 𝐿2  are the total magnetizing resistor and 

inductance which can be calculated by: 

 𝑅2 = 𝑟2 + (
𝑛2

𝑛1
)
2

∙ 𝑟1 (3.2) 

 𝐿2 =
𝜑2

𝐼2
+ (

𝑛2

𝑛1
)
2

∙
𝜑1

𝐼1
 (3.3) 

where 𝜑1, 𝜑2 are the total leakage fluxes of the two coils. Now the maximal induction 𝐵𝑚 

can be written as: 

 𝐵𝑚 =
1

4𝜋
∙ 𝑉1

√2

𝑛1∙𝑎∙𝑑∙𝑓
 (3.4) 

This magneto electric model contains an implicit system of 8 multiphysical equations 

and the results from (Tran, 2009) shows that the data of this model are very close to those 

of the model without Kapp’s hypothesis. So that this simpler model will be used as the AM 

of transformer since it does not lose many accuracy. 

The initial nodal thermal model can be derived as shown in the left of Fig. 3.4, then with 

the Y − ∆  transform which is also known as Kennely transform, it can be established 

equivalently as in the right part of Fig 3.4. 
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Fig. 3.4. Transform equivalent of the nodal thermal model (Tran, 2009) 

𝑇𝑐𝑜,  𝑇𝑖𝑟  and 𝑇𝑎𝑚  represent the copper, iron and ambient temperature respectively, 

𝑅𝑐𝑜 𝑎𝑖𝑟⁄ , 𝑅𝑖𝑟 𝑎𝑖𝑟⁄  and 𝑅𝑐𝑜 𝑖𝑟⁄  are the thermal resistances between copper and air, iron and 

air, copper and iron respectively, 𝑃𝑐𝑜 and 𝑃𝑖𝑟 denote the copper and iron losses, 𝑅𝑐𝑜, 𝑅𝑖𝑟 

and 𝑅𝑎𝑖𝑟 are equivalent thermal resistances of copper, iron and air. 

With this transformed model, the copper temperature of coils and the iron temperature 

of magnetic circuit can be de deduced: 

 𝑇𝑐𝑜 = 𝑇𝑎𝑚 +
𝑅𝑖𝑟 𝑎𝑖𝑟⁄ ∙𝑃𝑐𝑜+𝑅𝑖𝑟 𝑎𝑖𝑟⁄ ∙𝑃𝑖𝑟+𝑅𝑐𝑜 𝑖𝑟⁄ ∙𝑃𝑐𝑜

𝑅𝑐𝑜 𝑎𝑖𝑟⁄ +𝑅𝑖𝑟 𝑎𝑖𝑟⁄ +𝑅𝑐𝑜 𝑖𝑟⁄
∙ 𝑅𝑐𝑜 𝑎𝑖𝑟⁄  (3.5) 

 𝑇𝑖𝑟 = 𝑇𝑎𝑚 +
𝑅𝑐𝑜 𝑎𝑖𝑟⁄ ∙𝑃𝑐𝑜+𝑅𝑐𝑜 𝑎𝑖𝑟⁄ ∙𝑃𝑖𝑟+𝑅𝑐𝑜 𝑖𝑟⁄ ∙𝑃𝑖𝑟

𝑅𝑐𝑜 𝑎𝑖𝑟⁄ +𝑅𝑖𝑟 𝑎𝑖𝑟⁄ +𝑅𝑐𝑜 𝑖𝑟⁄
∙ 𝑅𝑖𝑟 𝑎𝑖𝑟⁄  (3.6) 

The system of analytical equations is ranked using specific algorithms (Duff & Reid, 

1978). The ranking of the system of non-linear equations that models magnetic, electric 

and thermal phenomena allows detecting the implicit system in order to assure the 

robustness of analytical model. Equations are detailed and explained in (Tran, 2009). 

1.2 Finite element model 

In order to build a more accurate model, FEM is considered. Thermal and magnetic 

phenomena are modeled by using 3D FEA on the eighth of transformer due to symmetries. 

There are about 43,000 nodes and 290,000 edges in the model. Fig 3.5 shows the mesh in 

the magnetic circuit, the insulating, the air gap, the frame and the opposing direction of 

currents in the primary and secondary windings that create flux in the gap between the 

coils (leakage flux). 
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Fig. 3.5. Mesh of 3D FEA for the transformer 

For the electromagnetic modeling, all magnetic and electric quantities are assumed 
sinusoidal. Full-load and no-load simulations are used to compute all the characteristics. 
The iron losses are computed with the Steinmetz formula and the leakage inductances are 
calculated with the magnetic co-energy. The core magnetic nonlinearity is taken into 
account. The inductance in the magnetic circuit can be observed on the eighth of 
transformer shown in the figure below. The flow created by the coils is mainly in the iron 
but there is also a leakage flux in the air and the coils, this leakage field is maximum between 

the two coils. 

 
Fig. 3.6. 3D Finite element magnetic simulation (Tran, Brisset & Brochet., 2007) 
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In the thermal modeling, some assumptions are considered:  

1. The insulator between the core and the coils is in perfect contact with both parts; 

2. There is no thermal contact between the exterior coil and the magnetic circuit;  

3. There is no thermal exchange with the air trapped between the coils and the iron; 

4. There is no convection on the upper and lower sides of the coil;  

5. There is no temperature gradient in the copper and the iron, and all surfaces have 

the same convection coefficient. 

Thermal simulation of finite element is shown as the Fig. 3.7, it can be seen that the 

temperatures in the magnetic circuit are not uniform, which is different with AM. It 

appears that copper has higher temperature than iron and the parts under the iron is the 

hottest. 

 

Fig. 3.7. 3D Finite element thermal simulation (Tran, 2009) 

A magneto-thermal weak coupling is also considered in 3D FEM, The computational 

time is equal to 10 minutes on a single core of an Intel Xeon CPU E5-2690 at 2.60 GHz 

(with the same platform, AM only takes less than a second for one evaluation). The copper 

and iron losses are computed with the magnetic AC solver and introduced as heat sources 

in the thermal static solver. The copper temperature is used to compute the resistances 

of coils introduced in the magnetic solver and this loop continues until change in 

temperatures is less than 0.1°C. Both solvers use the same mesh and are included in 

Opera3D software. 
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Fig. 3.8. 3D FEA magneto-thermal weak coupling (Tran, Brisset & Brochet., 2007) 

1.3 Comparison AM and FEM 

Before applying the methods to the optimization problem, a series of geometrical 

configuration is selected to compare the two former models: 𝑎 = 15mm, 𝑏 = 45mm, 𝑐 =

30mm, 𝑑 = 30mm, 𝑛1 = 800, 𝑆1 = 0.422mm2, 𝑆2 = 3.672mm
2 , where 𝑎, 𝑏, 𝑐  are the 

parameters for the shape of lamination, 𝑑  is the thickness of the frame, 𝑆1, 𝑆2  are the 

primary and secondary section of conductors, and 𝑛1 is the number of primary turn. 

Besides, other configurations necessary are selected as: power 192 (VA), primary 

voltage 𝑉1 = 230 (V) , secondary voltage 𝑉2 = 24 (V) , power factor 𝑓𝑝 = 0.8 , ambient 

temperature 𝑇𝑎𝑚 = 40 (℃) , coefficient of heat transfer by convection ℎ = 10 (W ∙

m−2 ∙ K−1), thermal conductivity of insulating material 0.15(W ∙ m−1 ∙ K−1), the resistivity 

of copper 𝜌𝑐𝑜 = 1.72 × 10−8 (Ω ∙ m) , variation of the resistivity of copper 𝛼𝑐𝑜 = 3.8 ×

10−8 (K−1). 

The results of both AM and FEM are presented in Table 3.1. The relative error is 

calculated by the percentage of difference between AM and FEM values divided by FEM 

ones. From the results, it can be seen that the 3D FEM is more accurate but it requires a 

great amount of time because of the magneto-thermal coupling. Besides, some results of 

the two models are rather close but there are also some others whose difference cannot 

be ignored, for example the relative error of copper temperature is −14.484%, and that 

is due to the temperatures in the winding and in the magnetic circuit are not uniform for 

3D FEM which differs from the assumptions of AM.  
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Table 3.1. Comparison of analytical and 3D FE models (Tran, Brisset & Brochet, 2007) 

Parameters   AM FEM Relative error 

Primary resistor r1 Ω 7.763 8.088 -4.018% 

Secondary resistor r2 Ω 0.158 0.166 -4.819% 

Primary leakage inductance l1 mH 17.040 16.980 0.353% 

Second leakage inductance l2 mH 0.280 0.245 14.286% 

Number of secondary turn  n2 -- 162.609 164.529 -1.167% 

Primary current I1 A 0.981 0.947 3.590% 

Magnetizing current Iμ mA 83.817 67.553 24.076% 

Magnetizing inductance Lμ H 8.846 10.214 -13.393% 

Maximal induction Bm T 1.438 1.281 12.256% 

Copper loss Pco W 16.623 17.573 -5.406% 

Iron loss Pir W 3.048 2.490 22.410% 

Copper temperature  Tco oC 107.40 125.59 -14.484% 

Iron temperature Tir oC 96.18 94.81 1.445% 

Efficiency η % 88.6 88.13 0.533% 

Voltage drop V2 V 2.424 2.736 -11.404% 

Computational time t S 0.5 6942.6 -- 

 

As the windings can withstand temperatures up to 120 ℃ , so that the copper 

temperature is used in the constraint 𝑇𝑐𝑜 ≤ 120, the underestimate of AM will enlarge the 

security domain and leads to an unfeasible solution. Additionally, the magnetizing 

current  𝐼𝜇 , voltage drop  ∆𝑉2  whose values are not accurate enough in AM may also 

influence other electromagnetic constraints. 

Moreover, in manufacturing, our purpose is to produce machines that meet the 

performance requirements with the least amount of material. Thus the total mass of the 

material 𝑚𝑡𝑜𝑡 is an important variable we concerned, which is the sum of iron mass 𝑚𝑖𝑟 

and copper mass 𝑚𝑐𝑜.  They can be calculated by the following expressions: 

 𝑚𝑖𝑟 = 4𝑎 ∙ 𝑏 ∙ (2𝑎 + 𝑏 + 𝑐) ∙ 𝜌𝑖𝑟 (3.7) 

 𝑚𝑐𝑜 = [(2𝑑 + 4𝑎 +
𝜋𝑐

2
) 𝑛1𝑆1 + (2𝑑 + 4𝑎 +

3𝜋𝑐

2
) 𝑛2𝑆2] ∙ 𝜌𝑐𝑜 (3.8) 

where 𝜌𝑖𝑟  and 𝜌𝑐𝑜  are the densities of iron and copper. For 𝑚𝑖𝑟 , it depends only on the 

inputs directly, but for  𝑚𝑐𝑜 , it depends on intermediate variable 𝑛2  also. Thus, the 

imprecise estimate of 𝑛2 calculated by AM will lead to an imprecise solution of total mass. 

Although FEM is more precise, it is impossible to use it for an optimization with 

methods for fast models due to the huge time consuming, thus methods for heavy models 

come in handy. 
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2 Optimization problem 

The optimization design problem for transformer contains 7 design variables. There 

are three parameters (𝑎, 𝑏, 𝑐) for the shape of the lamination, one for the frame (𝑑), two 

for the section of conductors (𝑆1, 𝑆2), and one for the number of primary turn (𝑛1) as 

shown in Fig 3.9. 

Their lower and upper bounds are presented in Table 3.2. 

Table 3.2. Lower and upper bounds for seven design variables 

Design variables 𝑎(𝑚𝑚) 𝑏(𝑚𝑚) 𝑐(𝑚𝑚) 𝑑(𝑚𝑚) 𝑛1 𝑆1(𝑚𝑚
2) 𝑆2(𝑚𝑚

2) 

Lower bound 3 14 6 10 200 0.15 0.15 

Upper bound 30 95 40 80 1200 19 19 

 

 

Fig. 3.9. The design variables of the transformer 

There are also 7 inequality constraints in this problem. The copper and iron 

temperatures 𝑇𝑐𝑜, 𝑇𝑖𝑟 should be less than 120℃ and 100℃, respectively. The efficiency 𝜂 

should be greater than  80% . The magnetizing current 𝐼𝜇 𝐼1⁄  and drop voltage ∆𝑉2 𝑉2⁄  

should be less than10%. All these constraints are computed with Finite Element Model 

(FEM) or Analytic Model (AM) model. Finally, the filling factors of both coils 𝑓1, 𝑓2 should 

be lower than 0.5. 

The goal is to minimize the mass 𝑚𝑡𝑜𝑡  of iron and copper materials. Thus, the 

optimization problem is expressed as: 

 
min
 
𝑚𝑡𝑜𝑡(𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2)

𝑠. 𝑡.  𝒈(𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2) ≤ 0
 (3.9) 

where 
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 𝒈 =

[
 
 
 
 
 
 
𝑔1
𝑔2
𝑔3
𝑔4
𝑔5
𝑔6
𝑔7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑇𝑐𝑜 − 120
𝑇𝑖𝑟 − 100
𝐼μ

𝐼1
− 0.1

∆𝑉2

𝑉2
− 0.1

𝑓1 − 0.5
𝑓2 − 0.5
0.8 − 𝜂 ]

 
 
 
 
 
 
 
 

 (3.10) 

Other configurations needed are fixed with the same values as presented in section 1.3 

during the optimization design problem. 

To verify the feasibility and efficiency of the aforementioned methods in this 

manuscript, all the design variables are considered as following the Gaussian distribution 

while the standard deviation is 1% of the lower bounds of each variable. As an industrial 

electromagnetic device, in order to increase the quality, the target probability of failure is 

set to be 𝑃𝑡 =0.13% that means reliability index is 𝛽𝑡 = 3, the confidence level 𝑘 is also 

set to be 3. 

3 Comparison of methods for fast models 
From the previous section, it can be noticed that AM of the transformer is fast to 

evaluate, it is natural to wonder whether the optimization problem can be solved with AM 

by the methods for fast models or not. To verify this question and to make a more general 

conclusion for the methods, AM of the transformer will be tested in this manuscript with 

methods mentioned in Chapter 1. Following parts will show the results of optimization 

given by different categories of methods. For the purpose of comparison, results of DDO 

will be presented in each type of category. 

3.1 WCO methods 

The problem of WCO for transformer can be written as:  

 

min
 𝒅
𝑚𝑡𝑜𝑡𝑤

(𝒅)

𝑠. 𝑡.  𝑔𝑤𝑖(𝒅) ≤ 0

𝒅𝑳 ≤ 𝒅 ≤ 𝒅𝑼

 (3.11) 

with  

 
𝑚𝑡𝑜𝑡𝑤

(𝒅) = max
𝝃∈𝑈(𝒅)

𝑚𝑡𝑜𝑡(𝝃)

𝑔𝑤𝑖(𝒅) = max
𝝃∈𝑈(𝒅)

𝑔𝑖(𝝃)
 (3.12) 

where 𝑚𝑡𝑜𝑡𝑤
 presents the worst-case of objective 𝑚𝑡𝑜𝑡 , 𝒅 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2]

𝑻  is the 

vector of input variables, 𝑈(𝒅) = {𝝃 ∈ ℝ7|𝒅 − 3𝝈 ≤ 𝝃 ≤ 𝒅 + 3𝝈}  is the uncertainty set 
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around the current design point 𝒅 and the standard deviation of inputs 𝝈 = 0.01𝒅𝑳, 𝑖 =

1, … ,7. 

Traditional WCO method (the one that uses inner optimization loop to calculate the 

worst-case for each point) and also WWCO, GWCO are all tested here. However in the 

Table 3.3 there are only results of WWCO and GWCO, traditional WCO is too complex and 

time consuming for this complicated model, the number of evaluations is out of our limit 

that is 105 whereas it could not find the optimum. It is because that for each objective 

function and constraint, it will introduce a sub-optimization process to calculate the 

worst-case of current design point. Thus for this transformer model which has one 

objective and 7 constraints, it needs 8 sub-optimization process. Moreover due to the 

multimodal and highly constrained characteristics of this optimization problem, these 

sub-optimizations may lead to the failure of finding out the global optimum correctly if no 

multi-start is used. In fact, even WWCO that evaluates only (2𝑝 +𝑚 + 1) times the model 

(𝑝 denotes the dimension of design variables and 𝑚 is the number of constraints) for each 

design point requires more than 3 × 104 evaluations in total. 

Table 3.3. Results of transformer optimization with different WCO methods 

Variables DDO WWCO GWCO 

𝑎(𝑚𝑚) 13.004 13.211 12.867 

𝑏(𝑚𝑚) 50.1 54.025 64.149 

𝑐(𝑚𝑚) 16.537 16.887 22.991 

𝑑(𝑚𝑚) 43.05 41.453 43.603 

𝑛1 639.76 670.57 670.15 

𝑠1(𝑚𝑚
2) 0.3238 0.3264 0.3431 

𝑠2(𝑚𝑚
2) 2.9026 2.9532 3.3165 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.3112 2.3950 2.8701 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0079 0.0082 0.0093 

Convergence (with 100 runs) 12% 78% 66% 

𝑚𝑡𝑜𝑡𝑤
 2.3648 2.4499 3.0899 

𝑔𝑤1 -0.0779 -0.0950 -0.0977 -0.2101 

𝑔𝑤2 0.0152 0 0 -0.1137 

𝑔𝑤3 -0.2872 -0.2692 -0.0656 -0.2530 

𝑔𝑤4 0.2185 0 0 -0.0210 

𝑔𝑤5 0.0436 -0.0001 0 -0.3533 

𝑔𝑤6 0.0322 0 -0.2791 -0.3076 

𝑔𝑤7 -0.1172 -0.1154 -0.0841 -0.1140 

Evaluations 242 36127 11218 

 

The lines 𝑚𝑡𝑜𝑡𝑤 and 𝑔𝑤𝑖 (𝑖 = 1,… ,7) present the worst-case of objective function and 

constraints. It can be seen that DDO has smaller values of 𝜇𝑚𝑡𝑜𝑡
, 𝜎𝑚𝑡𝑜𝑡

 and even 𝑚𝑡𝑜𝑡𝑤
, but 
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there are four worst-case constraints violated. As a contrast, other two methods of WCO 

can respect all the worst-case constraints. 

We focus on the two methods which can converge successfully within the limitation of 

evaluations number. WWCO needs almost 3 times more evaluations than GWCO. 

Comparing with the results in Chapter 1, it seems that GWCO is much faster as it only 

needs  (𝑝 + 1) times of evaluation for each design point while WWCO needs  (2𝑝 + 𝑚 +

1)  times. And it is obverse that with the increase of the constraint and input variable 

numbers, this advantage of GWCO becomes more and more pronounced. 

However, the results of GWCO are not advisable as both the mean 𝜇𝑚𝑡𝑜𝑡
 and the 

standard deviation of total mass 𝜎𝑚𝑡𝑜𝑡
 are larger than WWCO’s. The left column of 𝑔𝑤𝑖 for 

GWCO is calculated by the method itself, and right one is obtained by WCO, from these 

results it can be noticed that in fact the optimum found by GWCO is located on none of the 

worst-case limit-states. This method underestimate the worst-cases. 

This is the same as we have concluded in Chapter 1, traditional WCO needs the most 

number of evaluations and this time it is not affordable with a more complicated model 

as it fails to converge within the limitation of evaluations number. GWCO is the fastest 

among those three methods but it could not achieve the minimum performance. That is 

due to its principle of using an approximation to replace the exact worst case. Although 

sometimes WWCO could not find the exact worst case either and substitutes it with a 

vertex but, at least, the substitution is in the uncertainty set. On the contrary sometimes 

the approximation of GWCO may lie out of the set. So among them, WWCO is the most 

balanced and suitable method. 

3.2 RDO methods 

A robust problem of transformer involves the means and standard deviations of 

objective 𝑚𝑡𝑜𝑡 and constraints: 

 

min
𝒅
𝑓𝑟 (𝜇𝑚𝑡𝑜𝑡

(𝒅), 𝜎𝑚𝑡𝑜𝑡
(𝒅))

𝑠. 𝑡.   𝑔𝑟i(𝒅) ≤ 0

𝒅𝐿 + 3𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 3𝝈

 (3.13) 

where 

  𝑔𝑟i(𝒅) = 𝜇𝑔𝑖
(𝒅) + 3𝜎𝑔𝑖

(𝒅) (3.14) 

𝜇𝑔𝑖
(𝒅)  and 𝜎𝑔𝑖

(𝒅)  are the mean and standard deviation of the 𝑖 -th original constraints 

presented in Equation (3.10), 𝑖 = 1,… 7,  and 𝜇𝑚𝑡𝑜𝑡
(𝒅), 𝜎𝑚𝑡𝑜𝑡

(𝒅)  are the moments of 

objective 𝑚𝑡𝑜𝑡. 

In Chapter 1, section 2.2, 9 different formulations of RDO have been tested with a 

simple mathematic example, and after the discussion, it was concluded that Formulation 
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1 to 3 could find only one solution as their weight parameters for mean and standard 

deviation of initial objective function are fixed. Formulation 5 to 7 can reach different 

optimal points on account of different values of weight parameters. However, they depend 

on the function type of the two objectives, if it is convex, a whole Pareto front can be 

obtained, but if it is concave, only the bounds of this front can be reached. The three other 

formulations including ϵ-constraint and multi-objective algorithms perform well in the 

application of mathematic example. Now, all these nine methods are tested with this more 

complicated model of transformer to verify the former conclusions. 

Table 3.4, 3.5 and Fig 3.10 to 3.12 present the results of those multi-objective methods. 

Notice that before running optimization process of Formulation 4, the lower and upper 

bounds of 𝜎𝑚𝑡𝑜𝑡
 are needed. This information is calculated by minimizing only 𝜎𝑚𝑡𝑜𝑡

 and 

𝜇𝑚𝑡𝑜𝑡
 respectively and the values are 𝜎𝑓𝑚𝑖𝑛 = 8.055 × 10

−3, 𝜎𝑓𝑚𝑎𝑥 = 8.086 × 10−3. 

Table 3.4. Results of transformer optimization with first three RDO formulations 

Variables DDO Formulation 1  Formulation 2 Formulation 3 

𝑎(𝑚𝑚) 13.004 13.069 13.059 13.405 

𝑏(𝑚𝑚) 50.1 52.177 52.065 45.727 

𝑐(𝑚𝑚) 16.537 16.758 16.781 17.141 

𝑑(𝑚𝑚) 43.05 42.232 42.309 45.036 

𝑛1 639.76 657.36 656.60 603.31 

𝑠1(𝑚𝑚
2) 0.3238 0.3256 0.3257 0.3177 

𝑠2(𝑚𝑚
2) 2.9026 2.9294 2.9303 2.8606 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.3112 2.3524 2.3524 2.3572 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0079 0.0081 0.0081 0.0081 

Convergence 

(with 100 runs) 
12% 68% 75% 35% 

𝑔𝑟1 -0.0863 -0.0939 -0.0939 -0.0850 

𝑔𝑟2 0.0065 0 0 0 

𝑔𝑟3 -0.2990 -0.2877 -0.2877 -0.2921 

𝑔𝑟4 0.1055 0 0 0 

𝑔𝑟5 0.0218 0 0 0 

𝑔𝑟6 0.0171 0 0 0 

𝑔𝑟7 -0.1183 -0.1171 -0.1172 -0.1182 

Evaluations 242 5943 5723 4651 

 

We first concentrate on the first three formulations which can only obtain just one 

solution. From Table 3.4, lines 𝑔𝑟𝑖 (𝑖 = 1,… ,7)  present the robust constraints, in this 

situation, results of DDO no longer satisfy the constraints. It can be seen that Formulation 

1 and 2 achieve almost the same results while Formulation 3 could not converge to the 

global minimum. This situation is similar to in Chapter 1 and the reason is that the order 
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of magnitude difference between 𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 is great so even though Formulation 2 

adds an extra term 3𝜎𝑓(𝒅) in the robust objective compared with Formulation 1, it could 

not make influence to the result and both of them lead to the extreme of the Pareto front. 

Then for Formulation 3, the scaled values eliminate the gap of order of magnitude, so that 

it converges to another point. 

And for Formulation 4, the ϵ-constraint method, as the variance of 𝜎𝑓 is not very large, 

we divide the interval [𝜎𝑓𝑚𝑖𝑛, 𝜎𝑓𝑚𝑎𝑥] into 20 sections. Fig 3.10 shows the Pareto front 

found by Formulation 4. 

 
Fig. 3.10. Results of transformer with Formulation 4 

Formulation 5, 6 and 7 are the methods with variable weights, the only difference is 

that Formulation 5 uses square information, Formulation 7 uses scaled values and 

Formulation 6 uses just 𝜎𝑓 and 𝜇𝑓. However, as there exist a large difference in order of 

magnitude between 𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 in this problem, the square in Formulation 5 increase 

this difference and could only find one solution no matter how to change the weight. Its 

solution is shown in following table. 
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Table 3.5. Results of transformer optimization with RDO Formulation 5 

Variables 𝑎(𝑚𝑚) 𝑏(𝑚𝑚) 𝑐(𝑚𝑚) 𝑑(𝑚𝑚) 𝑛1 𝑠1(𝑚𝑚
2) 𝑠2(𝑚𝑚

2) 𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) Convergence 

Values 13.071 52.193 16.758 42.214 657.47 0.3256 2.9295 2.3524 69% 

Variables 𝑔𝑟1 𝑔𝑟2 𝑔𝑟3 𝑔𝑟4 𝑔𝑟1 𝑔𝑟1 𝑔𝑟1 𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) Evaluations 

Values -0.0969 0 -0.2741 0 0 0 -0.1167 0.0081 6053 

 

Results of Formulation 6 and 7 are in Fig. 3.11 and 3.12, it can be seen that this time 

the function of 𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 is convex so that these two formulations can obtain a 

Pareto front. Formulation 7 is more balanced owing to its scaled values. 

 

Fig. 3.11. Results of transformer with Formulation 6 
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Fig. 3.12. Results of transformer with Formulation 7 

Then for multi-objective methods as Formulation 8 and 9, we fix the goal for goal-attain 

algorithm as the robust minimum of 𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 which can be obtained by minimizing 

them with robust constraints, so that is [2.3524; 8.055 × 10−3]. However, neither goal-

attain algorithm nor NSGA2 could achieve the minimum within the limitation of function 

evaluation number, even if we change the goal to a non-attainable value. That is a 

consequence of highly constrained and multimodal. 

From all above results, the conclusion for this fast electromagnetic analytical model has 

some distinctions with the simple mathematic model in Chapter 1. For the simple 

mathematic model, the most efficient formulations are the formulation with ϵ-constraint 

method (Formulation 4) and multi-objective algorithms (Formulation 8, 9). However, for 

this analytical electromagnetic model, it can be seen that Formulation 4 and 7 perform the 

best while multi-objective algorithms failed to converge.  

Therefore, combine the results of both examples of transformer and mathematic 

model, we can conclude that multi-objective methods are always better than mono-

objective ones. However, the algorithms used for solving the multi-objective methods may 

result in different performance. 
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ϵ-constraint method is the most universal but it needs more information like the lower 

and upper bounds of standard deviation of objective function. Moreover, how to divide 

the interval [𝜎𝑓𝑚𝑖𝑛, 𝜎𝑓𝑚𝑎𝑥]  is another problem, if the sub-sections are too large, the 

method may fail to obtain a good Pareto front, but if they are too small, it will take a lot of 

time.  

Scaled values with weight parameters depends on the Pareto front’s curvature which 

is not available a priori, if it is concave, it could not obtain a complete Pareto front.  

Multi-objective methods are not stable, sometimes they could not give a feasible result 

within limitation of evaluation. 

3.3 RBDO methods 

For RBDO, the optimization problem is transformed into: 

 

min
𝒅
𝑚𝑡𝑜𝑡(𝒅)

𝑠. 𝑡.    𝑃𝑓 ≤ 0.13%

𝒅𝐿 + 3𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 3𝝈

 (3.15) 

where 

 𝑃𝑓 =

[
 
 
 
 
 
 
 
 
𝑃(𝑇𝑐𝑜 > 120)

𝑃(𝑇𝑖𝑟 > 100)

𝑃 (
𝐼μ

𝐼1
> 0.1)

𝑃 (
∆𝑉2

𝑉2
> 0.1)

𝑃(𝑓1 > 0.5)

𝑃(𝑓2 > 0.5)

𝑃(𝜂 < 0.8) ]
 
 
 
 
 
 
 
 

 (3.16) 

In Chapter 1 we focus on six methods belonging to the three different types of RBDO. 

Results have shown that with the simple mathematical example, sequential decoupled 

methods are the most suitable without losing any accuracy and other two types of 

methods cannot maintain the accuracy or require large amount of evaluations number.  

This time all those six mentioned methods (RIA, PMA, AMA, SLA, SORA and SAP) are 

tested with transformer AM to check the former conclusion. However only three of them 

can converge, and it is coincidental that in each type of RBDO method there is one that 

does not work (RIA, AMA and SAP).  

The results are shown in the following table. For comparison, there are two columns of 

probabilities of failures for each method, the left ones are calculated by the methods 

themselves and the right ones are calculated by Monte-Carlo simulation with 106 

samples. 

Table 3.6. Results of RBDO methods on the safety transformer 
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Method DDO PMA SLA SORA 

𝑎 (𝑚𝑚) 13.004 13.078 13.045 13.078 

𝑏 (𝑚𝑚) 50.1 52.274 51.613 52.278 

𝑐 (𝑚𝑚) 16.537 16.758 16.837 16.757 

𝑑 (𝑚𝑚) 43.05 42.182 42.603 42.180 

𝑛1 639.76 658.36 653.56 658.39 

𝑆1 (𝑚𝑚
2) 0.3238 0.3256 0.3254 0.3256 

𝑆2 (𝑚𝑚
2) 2.9026 2.9296 2.9273 2.9296 

𝜇𝑀𝑡𝑜𝑡(𝑘𝑔) 2.3112 2.3546 2.3534 2.3546 

𝜎𝑀𝑡𝑜𝑡(𝑘𝑔) 0.0079 0.0081 0.0081 0.0081 

Convergence 

(with 100 runs) 
12% 84% 72% 23% 

𝑃(𝑇𝑐𝑜 > 120℃)(%) 0 0 0 0 0 0 0 0 

𝑃(𝑇𝑖𝑟 > 100℃)(%) 50 50.658 0.13 0.1337 0.13 0.3754 0.13 0.1389 

𝑃(𝐼μ 𝐼1⁄ > 0.1)(%) 0 0 0 0 0 0 0 0 

𝑃(∆𝑉2 𝑉2⁄ > 0.1)(%) 50 50.203 0.13 0.1356 0.13 0.1357 0.13 0.1370 

𝑃(𝑓1 > 0.5)(%) 50 49.987 0.13 0.1323 0.13 0.1362 0.13 0.1388 

𝑃(𝑓2 > 0.5)(%) 50 50.021 0.13 0.1415 0.13 0.1368 0.13 0.1382 

𝑃(𝜂 < 0.8)(%) 0 0 0 0 0 0 0 0 

Evaluations 242 30607 3024 2171 

 

Note that PMA can find an optimum that satisfies all the constraints but the number of 

evaluations of the model is high. For SLA, it has a smaller number of evaluations but there 

is one constraint violated. The reason is that SLA sacrifices the accuracy in order to reduce 

the number of evaluations, leading to a coarse computation of the probability of failure. 

The convergence rate of SORA is not as good as the other two but it has the smallest 

number of evaluations among them. It can be seen that this number is nearly 15 times less 

than PMA and even less than SLA. It is also owing to the coarse computation of SLA, more 

iterations are needed to find out a solution. Unfortunately, the rate of convergence for 

SORA is three of four times lower than other two. So that a multi-start process is required 

and the number of evaluations will increase consequently.  

The conclusion from this transformer optimization has some similarities with 

mathematical example but also has some differences. The similarities are: The single-loop 

methods are always the most inaccurate method and double-loop methods have the 

highest number of evaluations, sequential decoupled methods are most efficient 

considering both the computing time and the accuracy.  

The differences are: In simple mathematic example, SAP is faster than SORA and single-

loop methods are generally faster than other two type of method. However, for more 

complicated examples like the transformer, some approaches like SAP fail to find a 

solution, probably because of the hard-constrained problem and the discontinuous 
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domains of security. So, it also indicates that not all the aforementioned approaches can 

handle complicated models. Moreover, the number of evaluations of SORA is smaller than 

of SLA for this optimization problem, SORA may be more effective for complex model. And 

Summarized from the two examples, SORA seems to be the most effective method among 

all the mentioned methods. 

3.4 RBRDO methods 

Also, all the mentioned 5 formulations of RBRDO in Chapter 1 are tested here with this 

electromagnetic AM to verify the previous conclusions. The formulation of RBRDO for 

transformer is written as: 

 

𝑚𝑖𝑛
𝑑
𝑓𝑟(𝜇𝑚𝑡𝑜𝑡

, 𝜎𝑚𝑡𝑜𝑡
)

𝑠. 𝑡.    𝑃𝑓 ≤ 0.13%

𝒅𝐿 + 3𝝈 ≤ 𝒅 ≤ 𝒅𝑈 − 3𝝈

 (3.17) 

where the expression of 𝑃𝑓 is the same as in Equation (3.16). 

First we compare the mono-objective methods, thus the Formulation 4 and 5. The 

results are shown in Table 3.7. 

Table 3.7. Results of RBRDO methods on the safety transformer 

Design variables DDO Formulation 4 Formulation 5 

𝑎(𝑚𝑚) 13.004 13.097 13.074 

𝑏(𝑚𝑚) 50.1 52.449 52.236 

𝑐(𝑚𝑚) 16.537 16.734 16.766 

𝑑(𝑚𝑚) 43.05 42.033 42.211 

𝑛1 639.76 659.74 658.11 

𝑠1(𝑚𝑚
2) 0.3238 0.3256 3.2568 

𝑠2(𝑚𝑚
2) 2.9026 2.9290 2.9298 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.3112 2.3546 2.3546 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0079 0.0081 0.0081 

Convergence (with 100 runs) 12% 85% 78% 

𝑃(𝑇𝑐𝑜 > 120℃)(%) 0 0 0 0 0 0 

𝑃(𝑇𝑖𝑟 > 100℃)(%) 50 50.658 0.13 0.1449 0.13 0.1336 

𝑃(𝐼μ 𝐼1⁄ > 0.1)(%) 0 0 0 0 0 0 

𝑃(∆𝑉2 𝑉2⁄ > 0.1)(%) 50 50.203 0.13 0.1375 0.13 0.1361 

𝑃(𝑓1 > 0.5)(%) 50 49.987 0.13 0.1317 0.13 0.1362 

𝑃(𝑓2 > 0.5)(%) 50 50.021 0.13 0.1351 0.13 0.1336 

𝑃(𝜂 < 0.8)(%) 0 0 0 0 0 0 

Evaluations 242 68846 76724 

Like RBDO, there are two columns of probabilities of failure, the left ones are calculated 

by the methods themselves, the right ones are obtained by Monte Carlo simulation with 
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106  samples. The results have the same regularity as with the simple mathematic 

example, we can notice that although the optima found by Formulation 4 and 5 have little 

differences, the values of  𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 are the same as results of PMA and SORA in 

RBDO, it is the same as we have found in Chapter 1.  

To compare other formulations, the target 𝑓𝑡  for NTB is chosen as the optimum of DDO 

that is 2.3112. It should be noticed that as the probabilities of failure for several 

constraints are 50% for DDO optimum, it surpasses the target probability 0.13% greatly, 

so this target is non-attainable for RBRDO. 𝜇𝑓0 , 𝜎𝑓0  for scaling are fixed as  𝜇𝑓0 =

2.7583, 𝜎𝑓0 = 0.0135. The weight parameter is changed, for example 𝜔1 from 0 to 1 with 

step 0.1 while 𝜔2 from 1 to 0 with negative step, the results are shown in following figures. 

It should be noticed that the scales of horizontal and vertical axis of Fig 3.15 are not the 

same as other two figures because that LTB finds solutions far from the minimum. 

 
Fig. 3.13. Results of transformer with different value of weight using NTB 
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Fig. 3.14. Results of transformer with different value of weight using STB 

 
Fig. 3.15. Results of transformer with different value of weight using LTB 
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As can been seen from Fig 3.13 and Fig 3.14, the Pareto front of 𝜇𝑚𝑡𝑜𝑡
 and 𝜎𝑚𝑡𝑜𝑡

 of 

transformer is convex, so not like in the simple mathematic example, this time STB it can 

also obtain a Pareto front as NTB.  

And for LTB, it finds a front quite strange, in fact it is due to its objective. It always aims 

to maximize the mean while minimizing the standard deviation, thus it is not suitable for 

the minimization problems. 

In conclusion, NTB and STB are most suitable, and in Fig. 3.16 we put the results of NTB 

and STB together, star marks present the solutions of NTB while circles present STB’s. It 

can be seen that all the solutions are on the same Pareto front and it is quite difficult to 

say which one performs better. 

 

Fig. 3.16. Comparison the results of NTB and STB 

Moreover, from the figure we can noticed that the solutions of STB are the same as 

those of NTB at the bounds 𝜔1 = 0,𝜔2 = 1 or 𝜔1 = 1,𝜔2 = 0.  At the two bounds, the two 

formulations have same solutions. It is because in the condition 𝜔1 = 0,𝜔2 = 1, both of 

their robust objective become (𝜎𝑓 𝜎𝑓0⁄ )
2

  according to the equations (1.61) and (1.62), 

since 𝜎𝑓0 is fixed, it always leads to the same results. And for the other bound, as the target 
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𝑓𝑡  cannot be achieved, both of them try to minimize the 𝜇𝑚𝑡𝑜𝑡
 only and therefore the 

solutions are same.  

Therefore, the conclusions of RBRDO methods are: Among the five formulations, NTB 

and STB are the most suitable for minimization problems, but the choice also needs to be 

based on the specific situation. Generally NTB is more universal as it can get a Pareto front 

in most situations while STB depends on the Pareto front’s curvature. However, the 

problem of NTB is that we need a target value which may difficult to choose at first. 

4 Comparison of methods for heavy models 
In this part, each method for heavy models will be tested with FEM. As this model is 

complicated and highly constrained, the feasible regions are small and maybe 

discontinuous. After testing, more than a thousand of initial samples are needed, if the 

initial samples are not enough, there may be no point lying in the feasible region. 

Moreover, there are 7 input variables, small group of initial samples could not cover many 

domains thus the meta-model will be too inaccurate to use. 

With these reasons, 7000 design points are chosen as initial samples to construct initial 

meta-models. These 7000 points are evaluated in parallel on 24 cores in about 49 hours. 

Then the following infill sampling points are evaluated sequentially. 

The following tables show optimal values, objective, constraints or probabilities of 

failure, and the number of evaluations for each type of method. Results of method for 

heavy models with AM are also presented for comparison. However, when the same 

solution is reevaluated with FEM (the right column for each table), it can be seen that not 

all constraints are satisfied. So the methods cannot be performed with AM only. The mass 

computed with FEM is slightly different from the one with AM and the reason has been 

explained in section 1.4 in this Chapter. 

4.1 WCO methods 

For WCO, as presented in Chapter 2, WWCO is the most suitable method which can 

balance the speed of converge and the precision. So the principle of WWCO is used here 

for the heavy models. Moreover, after the test with mathematic example, it is concluded 

that the strategy with WCEI as ISC presented in Equation (2.53) could achieve a solution 

more accurate, and this ISC acts on meta-models of original objective and constraints to 

predict the worst-case. The infill points are found and added into the sample set at each 

iteration after the optimization: 

 
max
 
𝑊𝐶𝐸𝐼(𝒅)

𝑠. 𝑡.  �̂�𝒘 ≤ 0
 (3.18) 

where �̂�𝒘  is calculated by max
𝝃∈𝑼(𝒅)

�̂�(𝒅 + 𝝃) , 𝒅 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑛1, 𝑆1, 𝑆2]
𝑇 , 𝑼(𝒅)  is the 

uncertainty set around 𝒅. 
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The results of meta-models based WWCO with criterion WCEI are shown in Table 3.8, 

for comparison, solutions of both FEM and AM are presented. The evaluation numbers are 

7616 for FEM and 7466 for AM. These are amounts of 7000 initial samples and several 

hundreds of infill samples added by ISC. It seems that with AM it needs less evaluations, 

but in table 3.8, it could be seen that the first two constraints are violated if the results of 

AM are used directly with FEM. These two constraints refer to the copper and iron 

temperatures, as has been discussed, AM simplifies the temperature and treated them as 

uniform, it results in the underestimate of constraints. With the same reason, the objective 

value found is higher with FEM than AM.  

Table 3.8. WCO results of transformer optimization with meta-model 

Values 
WWCO + FEM + 

meta-model 

WWCO + AM + 

meta-model 
FEM reevaluation 

𝑎(𝑚𝑚) 13.417 12.828 

𝑏(𝑚𝑚) 54.096 54.331 

𝑐(𝑚𝑚) 16.199 16.671 

𝑑(𝑚𝑚) 42.794 43.048 

𝑛1 646.97 665.19 

𝑠1(𝑚𝑚
2) 0.3171 0.3267 

𝑠2(𝑚𝑚
2) 2.9509 2.9568 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.4445 2.3956 2.3992 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0090 0.0082 0.0086 

𝑓𝑤 2.5041 2.4510 2.4573 

𝑔𝑤1 -0.0021 -0.0167 0.1349 

𝑔𝑤2 0 0 0.2139 

𝑔𝑤3 -0.0714 -0.0289 -0.0776 

𝑔𝑤4 0 0 -0.0396 

𝑔𝑤5 -0.0055 -0.0036 0.0349 

𝑔𝑤6 0 0 0.0228 

𝑔𝑤7 -0.0864 -0.0621 -0.0902 

Evaluations 7000+616 7000+466 1 

 

4.2 RDO methods 

For RDO, the formulation used is with the scaled values and weight parameters, the 

weight are all chosen as 0.5. Also following the conclusion in Chapter 2, the double-layer 

kriging based RDO will be used here. First layer is the meta-models of original objective 𝑓 

and constraints �̂�, then they are used to compute the moments �̂�𝑓 , �̂�𝒈, �̂�𝑓 and �̂�𝒈 by the 

uncertainty propagation methods like first order Taylor based method. At last criterion 

MWEI will be used to add new samples: 



169 
 

 
max
 
𝑀𝑊𝐸𝐼𝑓𝑟(𝒅)

𝑠. 𝑡.  �̂�𝒈(𝒅) + 𝑘 �̂�𝒈(𝒅) ≤ 0
 (3.19) 

where the confidence level is 𝑘 = 3 in this example. 

In fact as the most effective method concluded before, ϵ-constraint can also be used 

here. The only difference is that in each iteration, at the beginning of searching infill 

points, it is necessary to use the meta-model to find the values of 𝜎𝑓𝑚𝑖𝑛 and 𝜎𝑓𝑚𝑎𝑥, then 

add them into the constraints. 

Results of FEM with the mentioned meta-model based RDO are presented in Table 3.9, 

7273 total evaluations are needed for FEM. Among them, 7000 are initial samples which 

are chosen at the beginning, and 273 are added by MWEI. Same method with AM is also 

tested here and there are less iterations used with AM than with FEM, only 82 infill points 

are added during the optimization with AM. However, same with WCO, when the results 

of AM are reevaluated by FEM directly, it can be seen that the first two constraints are 

violated and objective value is augmented. Thus, FEM increases the precision of 

constraints and objective but this may also increase the evaluation number to find the 

optimum. 

Table 3.9. RDO results of transformer optimization with meta-model 

Values 
Formulation 7 + FEM 

+ meta-model 

Formulation 7 + AM 

+ meta-model 
FEM reevaluation 

𝑎(𝑚𝑚) 13.037 13.033 

𝑏(𝑚𝑚) 50.591 50.448 

𝑐(𝑚𝑚) 16.742 16.877 

𝑑(𝑚𝑚) 43.641 43.690 

𝑛1 646.87 638.62 

𝑠1(𝑚𝑚
2) 0.3216 0.3247 

𝑠2(𝑚𝑚
2) 2.9163 2.9140 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.3665 2.3624 2.3656 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0085 0.0081 0.0081 

𝑔𝑟1 -0.0074 -0.0087 0.0234 

𝑔𝑟2 0 0 0.0208 

𝑔𝑟3 -0.2263 -0.1739 -0.0823 

𝑔𝑟4 0 0 0.0045 

𝑔𝑟5 0 0 -0.0002 

𝑔𝑟6 0 0 0.0089 

𝑔𝑟7 -0.0918 -0.0906 -0.0766 

Evaluations 7000+273 7000+82 1 
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4.3 RBDO methods 

Among all the mentioned RBDO methods, SORA is the most universal and as has been 

proved in Chapter 2, the strategy SORA3 is the most efficient one without losing precision. 

Thus, SORA3 is chosen here to treat the transformer problem.  

Also 7000 initial samples are used to create the meta-models of original objective and 

constraints, then infill points are selected by maximizing MWEI to find the deterministic 

optimum: 

 
max
𝒅
 

𝑀𝑊𝐸𝐼𝑓(𝒅)

𝑠. 𝑡.  �̂�(𝒅) ≤ 0
 (3.20) 

After the deterministic optimum is found, sequential reliability assessment begins. 

Two different approach to analyze the reliability are used, if the inequality  ‖(𝒅𝑘 − 𝒅𝑖)/

𝝈‖ < 𝛽𝑡 holds, where 𝒅𝑖  is the optimum found by 𝑖-th cycle of deterministic optimization 

(𝑖 = 1,… , 𝑘), then we consider that the meta-model around 𝒅𝑘 is quite accurate as there 

already exists other samples. In this condition, reliability assessment will be done with 

meta-models directly: 

 
𝒙𝒌 = argmax

𝒙
�̂�(𝒅)

𝑠. 𝑡.  ‖(𝒙 − 𝒅𝒌)/𝝈‖ = 𝛽𝑡
 (3.21) 

where 𝒙~𝑁(𝑑, 𝜎2). Then the results 𝒙𝒌, also known as MPTPs are added to the sample set 

in order to evaluate and rebuild the meta-model �̂�. 

If the former inequality ‖(𝒅𝑘 − 𝒅𝑖) 𝝈⁄ ‖ < 𝛽𝑡 does not hold, then EI is used to add more 

samples in this region around 𝒅𝑘 so as to get more accurate MPTPs: 

 
𝒙𝒌 = argmax

𝒙
𝐸𝐼𝑔(𝒅)

𝑠. 𝑡.  ‖(𝒙 − 𝒅𝒌)/𝝈‖ = 𝛽𝑡
 (3.22) 

With the MPTPs, the shift vector is calculated  𝒕𝒌+𝟏 = 𝒅𝒌 − 𝒙𝒌 , then deterministic 

optimization considering this shift is introduced in but this time there is no more ISC: 

 
𝒅𝑘+1 = argmin

d
𝑓(𝒅)

𝑠. 𝑡.  �̂�(𝒅 − 𝒕𝒌+𝟏) ≤ 0
 (3.23) 

If the problem converges then 𝒅𝑘+1  is considered as the optimum, if not, (𝑘 + 1)-th 

cycle with reliability assessment will be continued.  

In this transformer problem with FEM, 265 additional points are infilled during 

deterministic optimizations and reliability assessments. Among them, 42 points are 

added in the first deterministic optimization with MWEI, and all the rest are added by 

reliability assessments and deterministic optimization with meta-models in 8 cycles.  
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The result of SORA3 with FEM is shown in the following table, it leads to probabilities 

of failure close to their target value. The probabilities of failure are calculated by MCS with 

106 samples, as the computing time is unbearable if all those 106 samples are evaluated 

with FEM, they are computed with meta-model. 

Result of SORA3 with AM is also presented here, the objective value is always higher 

with FEM because AM underestimates constraints. With the same solution reevaluated by 

FEM, the highest probability of failure is 90% which violate greatly our target.  

Table 3.10. RBDO results of transformer optimization with meta-model 

Values SORA3 + FEM SORA3 + AM FEM reevaluation 

𝑎(𝑚𝑚) 12.902 13.153 

𝑏(𝑚𝑚) 46.042 51.039 

𝑐(𝑚𝑚) 18.183 16.532 

𝑑(𝑚𝑚) 42.318 43.098 

𝑛1 659.06 641.75 

𝑠1(𝑚𝑚
2) 0.3254 0.3216 

𝑠2(𝑚𝑚
2) 2.7552 2.8956 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.4028 2.3552 2.3520 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0088 0.0081 0.0081 

𝑃(𝑇𝑐𝑜 > 120℃)(%) 0% 0% 0% 

𝑃(𝑇𝑖𝑟 > 100℃)(%) 0.1506% 0.1567% 90.05% 

𝑃(𝐼μ 𝐼1⁄ > 0.1)(%) 0% 0% 0% 

𝑃(∆𝑉2 𝑉2⁄ > 0.1)(%) 0.1348% 0.1420% 0.3281% 

𝑃(𝑓1 > 0.5)(%) 0.1327% 0.1236% 71.20% 

𝑃(𝑓2 > 0.5)(%) 0.1282% 0.1307% 0.0014% 

𝑃(𝜂 < 0.8)(%) 0% 0% 0% 

Evaluations 7000+265 7000+242 1 

 

4.4 RBRDO methods 

For RBRDO, in previous section we noticed that both NTB and STB work well with AM, 

and each of them have their own merits. Here for FEM, as the target value 𝑓𝑡  is unknown, 

STB is chosen to use. The weights 𝜔1, 𝜔2 are all fixed as 0.5 and the scaled values are 

calculated by one of the initial samples. 

The strategy of meta-model based STB is a combination of RDO’s and RBDO’s 

strategies. So as to choose the most suitable method, double-layer meta-model and SORA3 

are brought in. The process is almost the same with SORA3, the only difference is that we 

use 𝑓𝑟 instead of 𝑓 in Equations (3.20) and (3.23), and before these two optimizations, an 
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additional step to build the second-layer meta-model, thus the meta-models of moments, 

should be added. 

Table 3.11 shows the results of STB with FEM and AM using meta-models, respectively. 

And as always, the constraints are not satisfied when solution of AM is reevaluated with 

FEM. Moreover, for STB with meta-model of FEM, it uses 7541 points to converge, among 

them, 7000 are initial points, 134 are added by the first deterministic optimization, and 

others are infilled in 12 sequential circles of reliability assessment and optimization. 

Comparing with RBDO, it needs more samples to obtain the first deterministic optimum 

and more iterations to converge. 

Table 3.11. RBRDO results of transformer optimization with meta-model 

Values 
STB + FEM + meta-

model 

STB + AM + meta-

model 
FEM reevaluation 

𝑎(𝑚𝑚) 13.042 12.933 

𝑏(𝑚𝑚) 49.355 46.950 

𝑐(𝑚𝑚) 18.104 19.267 

𝑑(𝑚𝑚) 43.540 42.858 

𝑛1 648.52 652.99 

𝑠1(𝑚𝑚
2) 0.3256 0.3393 

𝑠2(𝑚𝑚
2) 2.9166 3.0422 

𝜇𝑚𝑡𝑜𝑡
(𝑘𝑔) 2.4113 2.3662 2.3700 

𝜎𝑚𝑡𝑜𝑡
(𝑘𝑔) 0.0088 0.0081 0.0081 

𝑃(𝑇𝑐𝑜 > 120℃)(%) 0 0 76.87% 

𝑃(𝑇𝑖𝑟 > 100℃)(%) 0.1419% 0.1321% 53.14% 

𝑃(𝐼μ 𝐼1⁄ > 0.1)(%) 0 0 0 

𝑃(∆𝑉2 𝑉2⁄ > 0.1)(%) 0.1395% 0.1371% 0.1707% 

𝑃(𝑓1 > 0.5)(%) 0.1339% 0.1417% 0.2033% 

𝑃(𝑓2 > 0.5)(%) 0.1341% 0.1337% 34.22% 

𝑃(𝜂 < 0.8)(%) 0 0 0 

Evaluations 7000+541 7000+493 1 

 

From all above results, it can be seen that the first advantage of methods for heavy 

models with FEM is that a significant computing time can be saved as it reduces the 

number of evaluations. If optimization methods are used on FEM directly without meta-

model, it can be imaged that more than 104 evaluations are needed by considering the 

multi-starts. But with meta-model, this number can be controlled in a few thousands. Of 

course multi-starts are also needed for models with meta-model when ISC are used to find 

the next sample point, but meta-model insures that no more evaluations are made in this 

process. Moreover, methods for heavy models could evaluate the initial samples in 

parallel when building the initial meta-model while all evaluations are calculated in 

sequential by methods for fast models. 

 The second and also the most important advantage is that kriging model gives accurate 

derivatives that enable the use of fast gradient-based algorithm. Contrarily, as FEM 
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provides noisy derivatives it requires a noise-free costly algorithm when directly 

connected with it. 

5 Conclusion 
In this chapter, a single-phase safety isolating transformer is introduced and a design 

optimization problem with 7 geometric variables is used as an example to test all the 

mentioned approaches for fast and heavy models using analytic model and finite element 

model, respectively. AM operates much faster than FEM but it is more imprecise than the 

latter as it neglects some thermal and magnetic information. Thus will change the domain 

of security and obtain some improper solutions. In that case, FEM is necessary but owing 

to the huge computational burden, only meta-model based methods are adapted. 

First, according to the AM of transformer, the methods for fast models are verified and 

a more general conclusion can be made.  

For WCO, the traditional WCO is the most time consuming approach, GWCO is the 

fastest but cannot lead to an accurate solution due to its principle. Among them, WWCO is 

the most suitable. 

For RDO, multi-objective methods can find different solutions which satisfy different 

compromises between the mean and the standard deviation of objective. However, 

different algorithms for multi-objective have distinct applications: 𝜖-constraint can apply 

to most occasions, but it needs additional information such as the minimum or maximum 

of the second objective. Formulation with scaled values and weight parameter depends 

on the Pareto front curvature which is not available in advance: if it is convex, it can obtain 

a complete Pareto front, if not then only the bounds may be found. Multi-objective 

algorithms like NSGA2 require large number of evaluations that limits their use. 

For RBDO, single-loop methods are the fastest but not accurate enough. Double-loop 

methods needs much more evaluations. And for sequential decoupled methods, SAP 

approach is the most efficient one but sometimes it may fail to converge. Therefore, SORA 

is the most practical RBDO method. 

For RBRDO, with regard to minimizing problem, both Normal-the-best and the smaller-

the-better can be adapted, but for the former one, it needs to choose a target value before 

the process of optimization and for the latter one, it can obtain a complete Pareto front 

only if the front is convex. Considering that the shape of front is unknown in advance, 

Normal-the-better is more universal. 

Then FEM is tested with the methods for heavy models. Results show their applicability 

in dealing with this highly constrained problem, and a significant computing time can be 

saved. Compared with AM of the same device, these approaches with FEM could get more 

accurate solutions. 
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Meta-model based WCO with WCEI is tested with FEM, and the optimum found is larger 

than using AM, thus because the inaccuracy of AM underestimate the constraints and 

enlarge the security domain. This phenomenon also exists for other categories of 

methods. 

Then for RDO, as presented in Chapter 2, double-layer meta-model based method using 

MWEI is more effective so that it is chosen to be used here, and it should be noticed that 

as this method needs two layers of meta-model to build robust objective and constraints, 

the inaccuracy will also increase. 

Meta-model based SORA is chosen to be used here for FEM, the strategy comprises two 

ISC and a proximity criterion. First MWEI is used during the primary deterministic 

optimization and then a proximity criterion before each reliability assessment, if it is 

satisfied, EI will be used during reliability assessment to add more samples around the 

current design point in order to find a more accurate probability.  

At last for RBRDO, double-layer kriging method presented in RDO is combined with 

SORA in RDO. Results show that it could achieve the optimum in a dozen of iterations. 

However, as the number of added samples are less than one tenth of the total number 

of evaluations, the choice of initial samples may be very unreasonable. The number can 

be reduced probably and a more suitable method to choose the positions of initial samples 

should be chosen. And as this model is complex, it can be imagined that it is very 

dependent on the initial samples. With different initial samples, the surrogate model may 

be different and it may leads to a disparate results if the meta-model is not accurate 

enough. 
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Conclusion and perspectives 

The research work presented in this manuscript addresses the methods for the design 

optimizations with uncertainty. In real world applications, the uncertainties can be 

brought in by the model structural, observation, inaccuracy of parameters like 

measurement of geometric dimensioning and other factors we could not control. What we 

focus in this research is the uncertainty of geometric parameters. This uncertainty can 

have great effects on the product performance, cost and durability especially for 

sophisticated devices. In order to reduce these unexpected impacts, stochastic design 

optimizations (SDO) are proposed to treat the random variables and to get a solution 

more reliable and robust. 

The presentation of the research work starts with the introduction of different SDO 

methods for fast models. The SDO can be mainly divided into four categories, worst-case 

optimization (WCO), robust design optimization (RDO), reliability-based design 

optimization (RBDO) and the combination of the latter two, reliability-based robust 

design optimization (RBRDO). The principles and emphases of these categories are 

different but their purposes are same: they try to find solutions shifted from the original 

deterministic solution lying on limit-states to the deep of security domain. That means 

their solutions have less probability to violate the constraints. Each of these categories 

has various approaches or formulations. 

A simple mathematic model and a safety transformer such as an optimization problem 

in practical application are used in this manuscript to test the different approaches, first 

the mathematic example and the analytic model of transformer are tested with the 

methods for fast models, a synthesis is made to compare the results for each type of SDO 

and the most efficient method is chosen.  

For WCO, it creates an uncertainty set around the current values of inputs, and the 

worst (maximum) values of objective function and constraints calculated in this set are 

treated as the worst-case outputs. So that the aim of WCO is to make sure even the worst-

case outputs can respect the constraints, in this way the robustness can be improved. 

Traditional WCO, worst-vertex WCO and gradient-based approach are introduced and 

with the help of the simple mathematic model, it can be seen that worst-vertex WCO 

converges faster than traditional WCO and gets a solution more precise than gradient-

based one, it is considered as the most efficient approach in this category. 

RDO focuses on finding a feasible solution with minimum variability of original 

objective function. To tackle this problem, the mean and the standard deviation of original 

objective are both taken into account. The RDO approaches presented in this manuscript 

can be roughly divided into two types. The first one is mono-objective like Formulation 1 

to 3 in Chapter 1, it fixes the relation between the mean and standard deviation and could 
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find only one solution. The rest formulations belong to multi-objective approach, they 

treat the mean and standard deviation as two different objectives so that we could get a 

Pareto front with them. Moreover, for solving the multi-objective problem, different 

techniques are proposed. Formulation 4 is ϵ-constraint method which changes the multi-

objective problem into a series of mono-objective ones. Formulation 5 to 7 are weighted 

calculation which combine the two objectives together by using different weights. 

Formulation 8 and 9 are not transformed and require multi-objective algorithms like 

NSGA2 directly. Among all multi-objective formulations, ϵ-constraint method performs 

best as it can always get a Pareto front. Weighted formulations depend on the curvature 

of front, if it is convex the formulations can obtain a complete Pareto front, if not then only 

the bounds are found. And multi-objectives needs much more evaluations than others. 

RBDO methods use probability of failure to describe the possibility of violating 

constraints. To calculate the probability, double-loop methods use a nested optimization 

to analyze the reliability, single-loop methods decide to use approximations of the 

reliability analysis, and sequential methods change the bi-level optimization into a series 

of decoupled deterministic optimization and reliability assessment. With the results of the 

two examples, it could conclude that for double-loop methods, PMA has higher rate of 

converge and less number of evaluations than RIA, but in general, they are time 

consuming. For single-loop methods, AMA is faster but much less accurate, SLA presents 

a good compromise between the accuracy and the speed. Sequential methods are faster 

than double-loop methods and does not lose any accuracy. Among them, SORA is the most 

effective one which could be applied in most cases. 

The objectives of RBRDO consider also the mean and standard deviation of original 

objective function like RDO while the constraints turns into probabilistic ones like RBDO.  

As it combines both features of the other two categories, it improves the reliability and 

the robustness at the same time. Also, multi-objective and mono-objective approaches are 

proposed but a Pareto front obtained by multi-objective is obviously more universal. 

Among them, the Normal-the-best and Smaller-the-better formulations are both useful 

with their own merits. 

Then new adaptive kriging based SDO methods with infill searching criteria (ISC) are 

proposed for time-consuming models like finite element analysis of electromagnetic 

devices. For those heavy models, the mentioned approaches in Chapter 1 are no longer 

suitable as the computational burden is unbearable. Moreover, all the mentioned methods 

need to calculate the gradient but, as finite element models provide noisy derivatives, it 

requires a noise-free costly algorithm when directly connected with it. So that kriging 

meta-models is a good alternative as it gives accurate derivatives that enable the use of 

fast gradient-based algorithm.  

Although kriging methods have been applied in deterministic optimization for more 

than twenty years, it has not been applied very much into stochastic optimization in 

electromagnetic domain, especially with other three categories expect RBDO. Traditional 
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kriging approaches build a surrogate model at the beginning and then use it in 

optimization process without any change. These approaches may result in two outcomes: 

if the samples selected to build the meta-model are too many, it wastes the time, but if the 

samples are not enough, we may miss the good solution as the meta-model is not accurate. 

Thus, ISC are used to replace the objective function in optimization process. With the help 

of ISC, we can add the samples at the most needed place and optimize the problem while 

improving the accuracy simultaneously. After the new samples are added, meta-model is 

reconstructed and optimization continues until an accurate global solution is found. 

Strategies of adaptive meta-model based on different SDO methods are proposed and 

with the help of both mathematic model and finite element model of the transformer, we 

highlight which ISC should be used and where the samples should be added during the 

process.  

For WCO, meta-models are built on the original objective function and constraints in 

order to improve the accuracy of searching the worst-case. Then two criteria are 

proposed to act directly on the meta-model to estimate the worst-case values. After 

comparing their solutions and numbers of evaluations, it can be seen that the one enrich 

with WCEI is more accurate.  

Then for RDO, as the calculations of moments of original objective and constraints need 

large amount of evaluations, a double-layer kriging method is proposed in order to save 

time. The first layer is the surrogate models for original objective and constraints and the 

second layer meta-models are for the moments which could be built with the former layer. 

Formulations and ISC like MWEI can be used with this estimated moments to solve the 

problem. Results of the two examples show that the number of evaluation is reduced 

greatly by this strategy than single-layer meta-model method without losing much 

accuracy. 

Different approaches using SLA, PMA and SORA separately are proposed for RBDO. SLA 

uses MWEI to add new samples directly with meta-models of objective and constraints, 

but it is not accurate at all. Strategies based on PMA are either too time consuming or too 

inaccurate. After tests it could be found that the strategy based on SORA which uses MWEI 

for first deterministic optimization and a proximity criterion before reliability 

assessments is the most efficient one. 

For RBRDO, as it has been seen in RDO, double-layer kriging method performs much 

better than single-layer kriging model, so it is also used here. This method is combined 

with process of SLA, PMA and SORA, and SORA performs better than other two. 

Solutions of SDO with finite element model are obtained with the help of methods for 

heavy models. For these solutions, the objective value is generally higher than the one 

obtained by analytic model but this is due to the fact that the latter’s inaccuracy 

underestimates some constraints. 
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In summary, this manuscript compares existing stochastic optimization methods for 

fast models and provides the most effective adaptive criterion-based kriging methods 

then verifies their feasibilities through an electromagnetic finite element model. The use 

of adaptive kriging models is inescapable for these expensive models, even though this 

thesis contributed to some adapted methods, a lot of works is still waiting in order to 

address a broader range of problems. 

Firstly, in this research work, the proposed adaptive meta-model based SDO methods 

always add only one sample after each optimization with ISC. This may influence the 

speed of converge and the accuracy.  How to infill more than one points with ISC in order 

to improve the speed and simplify the process is worth to be studied. For example, as the 

ISC is multimodal, after the global maximum is selected, we could focus on other regions 

far from this optimum in order to find several solutions. With this strategy, more than one 

points can be added and calculation burden does not increase too much. 

Secondly, with the finite element model of transformer, 7000 initial samples are 

selected in this manuscript. However, these account for more than 90% of total 

devaluations, thus the initial samples and infilled samples are not balanced. There is a 

high probability that the number of initial samples can be smaller, so that a more suitable 

initial sample set should be chosen. 

Thirdly, in this research, the uncertainties of inputs are assumed as independent and 

following the normal distribution. However, in real electromagnetic engineering field, 

these hypotheses may not hold, thus the methods should make the appropriate changes. 

For example, if the design variables follow the uniform distribution, then the Taylor-based 

method to calculate the moments of outputs in RDO is no longer applicable, another 

uncertainty propagation method need to be used. Also for calculating the probability of 

failure in RBDO, the form of iso-probalistic transformation should change in order to suit 

the first-order reliability method. 
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 Méthodes de conception par optimisation robuste et fiable de dispositifs 

électrotechniques 

 

Résumé: Cette thèse porte sur les méthodes d'optimisation robuste et fiable. Les 

différentes catégories de méthodes d'optimisation stochastique pour traiter les incertitudes 

sur les dimensions et les matériaux sont présentées. Ces méthodes visent à trouver une 

solution plus robuste et/ou fiable en minimisant la variance de l'objectif et/ou en réduisant la 

probabilité de violer les contraintes de faisabilité. Cependant, ces méthodes augmentent le 

nombre d'évaluations par rapport à une optimisation déterministe et nécessitent le gradient 

qui peut être bruité pour des modèles éléments finis. Ainsi, des stratégies basées sur des 

méta-modèles de kriging sont proposées pour approcher des fonctions complexes et donner 

des dérivées sans bruit. Des critères d’enrichissement sont utilisés pour affiner la précision 

tout en cherchant l’optimum. Différentes stratégies comprenant le choix du critère et le 

positionnement de l'enrichissement sont comparées pour mettre en évidence les plus 

efficaces. Enfin, les stratégies d’optimisation développées dans cette thèse sont appliquées à 

l’optimisation d'un transformateur modélisé par des équations analytiques puis par la 

méthode des éléments finis. 

 

Mots-clefs: optimisation, conception, incertitude, robustesse, fiabilité, méta-modèle, 

transformateur, modèle d’éléments finis 

 

 

Methods for Robust and Reliability-based Design Optimization of Electromagnetic Devices 

 

Abstract: This PhD thesis deals with the robust and reliability-based optimization problems 

under uncertainty on dimensions and material properties. First, the different categories of 

stochastic optimization methods to treat the uncertainty are presented. These methods aim 

to find a more robust and/or reliable solution by minimizing the variance of objective and/or 

reducing the probability to violate the constraints of feasibility. However, as these methods 

increase the number of evaluations compared to deterministic optimization and need the 

gradient information that may be noisy when provided by finite element models, they are not 

suitable for the time-consuming models. So kriging-based meta-model strategies are 

proposed as they can approximate complex functions and give noise-free derivatives. Infill 

sampling criteria are used to increase their precision while searching for the optimal solution. 

Different strategies including the choice of the criterion and the positioning of sample 

enrichment are compared to highlight the most effective ones. Then, the optimization 

approaches developed within this research work are applied to the optimization problem of a 

transformer modelled with analytic equations and finite element models. 

 

Keywords: design optimization, uncertainty, robust, reliability, meta-model, 

electromagnetic device, finite element model 


