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Historically, electricity was mainly produced by 
central plants connected to the transmission network.

Consumption

Generation
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Consumption

Generation

Since the 2000s, more and more Renewable Energy Sources 
(RES) have been connected to the distribution networks.
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Consumption

Generation

RES

RES

RES

RES
RES

In the near future, a massive integration of RES 
is expected in the distribution networks.
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Risk of voltage/current constraints
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+             !!!

Network investments to connect 25 GW by 2030: 
300 k€/MW of photovoltaic generation
100 k€/MW of wind generation

Network reinforcement

Risk of voltage/current constraints
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• Advanced reactive power control of generators
• Generation curtailment
• Real-time voltage control in the substations
• Energy storage
• …
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Alternatives to reinforcement

Pg ↓

Qg ~

P, Q~

Uref ~

?
Network reinforcement

Risk of voltage/current constraints
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• Real-time voltage control in the HV/MV substations
• Advanced reactive power control of generators

• Generation curtailment
• Energy storage
• …
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Alternatives to reinforcement

Pg ↓

Qg ~

P, Q~

Uref ~

?
Network reinforcement

Risk of voltage/current constraints

Which are the best solutions to reduce costs of 
integrating RES in the medium/long term
at an acceptable level of risk and quality?
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Current planning Requirements with RES

RES-
integration
solutions

Operating
limits?

No Yes, in energy and/or duration

Operating 
costs?

Power losses
Energy not supplied

+ Non-negligible costs 
depending on the constraints

Network 
planning 
methods

Studied 
scenarios

« Worst case »
Multi-year profiles of 

generation/consumption

Constraint 
indicators

Boolean 
(yes or no)

Statistical
(frequency, severity, duration)

Objective
Prevent 100 % of the 
networks constraints

Reach a tradeoff between costs 
and quality of supply
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Need to modify the current planning methods to assess the techno-
economic impacts of the RES-integration solutions

Extensive literature review on the planning approaches 
taking into account RES-integration solutions

Main limits of the existing planning approaches:

• Inappropriate time sampling: too small time period and/or time step

• Future events sometimes assumed to be perfectly known

• Interactions between MV and LV networks generally neglected

• Economic analysis sometimes incomplete or missing

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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The limits of the existing planning approaches 
can distort the assessment of the techno-economic 

impacts of the RES-integration solutions.
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• Methods for medium-term distribution network planning (10 years)

• Network constraints: slow voltage/current variations (10 minutes)

• Quality of supply: voltage limits and weakly-supplied LV consumers

• Network and communication facilities assumed reliable

• Provide a suitable framework for the study of RES-integration 
solutions in the medium/long run

• Address the main limits of the existing planning approaches:
‒ Distribution System Operator (DSO)’s behavior
‒ Uncertainty on the arrivals of new RES
‒ Interactions between MV and LV networks
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OBJECTIVES

SCOPE
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Question

How can we address the main limits of the existing approaches?
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Initial state Final state

?

Interactions 
between 

MV and LV 
networks

DSO’s behavior

Uncertainty on 
the arrivals of 

new RES
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Initial state Final state

?

Interactions 
between 

MV and LV 
networks

Define multi-variable 
planning strategies 

including RES-
integration solutions

Use stochastic 
scenarios of RES 

arrivals

Use a LV network 
model

DSO’s behavior

Uncertainty on 
the arrivals of 

new RES

Question

Proposed approach
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Proposed tool

Network + DSO 
simulator

DSO’s decision 
analysis

MV and LV 
network state

Initial 
network

Variables

Scenario

Costs

Scenario 
parameters

Fixed 
planning 
strategy

ConstraintsActions

Technical 
outputs

Multi-variable 
planning 
strategy

Economic 
analysis

Multi-year 
scenario 
builder

Simulate DSO’s analyses / actions
+ Compute the network state

Define the DSO’s 
decision tree / strategy

Compute the 
total costs of the 
strategy over the 
given scenario

Consider stochastic 
arrivals of RES + load and 
generation uncertainties
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Scenario builder

Generate multi-year scenarios:

• Features of new RES producers 

• 10-minute profiles of generation, consumption and voltage reference
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Planning strategy

Model the Distribution System Operator (DSO)’s behavior. 

Planning strategy 
the sequence of the decision analyses made by the DSO in everyday life, 

as well as the associated decisions, when the DSO notices an event
that may require some adaptations of the existing network.

Examples of event 
connection of a new user, too many weakly-supplied consumers, 

constraint limit violations, expected load growth in the coming years, etc.

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion



25�	
� � ���
���� �� � ��

Planning strategy

Model the Distribution System Operator (DSO)’s behavior. 
• Each planning strategy is a sequence of rules.

• Each rule describes the RES-integration solutions to remove constraints.

Example of the current French strategy:
If the connection of a new MV producer to a feeder supplying loads may cause overvoltages, 
then it is necessary to:

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, 
with tan(φ) ≥ tan(φ)min,DSO.

R3: decrease the fixed voltage reference of the on-load tap changer of the HV/MV transformer 
UOLTC, with UOLTC ≥ UOLTC,min.

R4: reinforce the MV network.

 minmin,min ,)tan(,)tan( OLTCDSO U 

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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Planning strategy

Model the Distribution System Operator (DSO)’s behavior. 
• Each planning strategy is a sequence of rules.

• Each rule describes the RES-integration solutions to remove constraints.

Example of a new strategy including generation curtailment:
If the connection of a new MV producer to a feeder supplying loads may cause overvoltages, 
then it is necessary to:

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, 
with tan(φ) ≥ tan(φ)min,DSO.

R3: decrease the fixed voltage reference of the on-load tap changer of the HV/MV transformer 
UOLTC, with UOLTC ≥ UOLTC,min.

R5: limit the active power of the MV producers considering a maximal curtailment rate 
τcurt ≤ τcurt,max.

R4: reinforce the MV network.  max,minmin,min ,,)tan(,)tan( curtOLTCDSO U  

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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Network + DSO 
simulator

Simulate the network evolutions on a year-by-year basis:

1. Apply the planning strategy at the beginning of the year to remove limit violations 
and accommodate all LV and MV producers. 

2. Estimate the network state over the whole year on the basis of 10-minute 
generation/consumption profiles. 

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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Network + DSO 
simulator

Simulate the network evolutions on a year-by-year basis:

1. Apply the planning strategy at the beginning of the year to remove limit violations 
and accommodate all LV and MV producers. 

2. Estimate the network state over the whole year on the basis of 10-minute 
generation/consumption profiles. 
a. MV network state: voltages, currents, losses and total apparent power 

b. LV network state: extreme voltages and number of weakly-supplied LV consumers

Approximation 
method

n (fast) approximate
load-flows

)( mnX  )(
~

lnY 

n* (slow) exact  
load-flows

Sampling method

)*(* mnX  )*(* lnY 

n* << n

 PART 3
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Economic 
analysis

Compute the investments and operating costs over the studied period.

Stake-
holders

Investment and operating costs

DSO

Upgraded and new MV lines 
Upgraded HV/MV transformers
Upgraded MV/LV transformers
MV line losses

MV 
producers

Upgraded and new MV lines
Upgraded HV/MV transformers
Power Conversion System (PCS) oversizing 
PCS maintenance

LV 
producers

Only if connected to dedicated feeders:
Upgraded MV/LV transformers 
New LV dedicated feeders
(New MV lines)
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Network + DSO 
simulator

DSO’s decision 
analysis

MV and LV 
network state

Initial 
network

Variables

Scenario

Costs

Scenario 
parameters

Fixed 
planning 
strategy

ConstraintsActions

Technical 
outputs

Multi-variable 
planning 
strategy

Economic 
analysis

Multi-year 
scenario 
builder
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S

Example of application: the current French planning strategy
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Year 10

Load: +2 %/y

Gen.: 20 MW

Year 0

Load: 11 MVA

Generation: 0
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Example of application: the current French planning strategy

Studied scenario
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Upgraded line
Upgraded transformer
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Example of application: the current French planning strategy
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Year 1

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 2

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 3

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 4

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 5

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 6

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 7

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 8

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 9

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Year 10

Upgraded line
Upgraded transformer

New line
New MV producer

Example of application: the current French planning strategy
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Example of application: the current French planning strategy

Technical results
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Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Total

Length of upgraded/new

MV lines [km]
0 1,2 0 0 1,9 1,2 4,3 15 3,3 2 28,9

Number of upgraded/new

MV/LV transformers
9 0 2 2 1 9 4 0 0 1 28

Power losses [MWh] 308 331 353 352 340 352 293 596 528 549 4001

Level of weakly-supplied 

LV consumers [%]
0,73 0,41 1,05 0,63 0,63 1,81 0,03 0,10 0,19 1,01 –
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Economic results

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

46

Network + DSO 
simulator

DSO’s decision 
analysis

MV and LV 
network state

Initial 
network

Variables

Scenario

Costs

Scenario 
parameters

Fixed 
planning 
strategy

ConstraintsActions

Technical 
outputs

Multi-variable 
planning 
strategy

Economic 
analysis

Multi-year 
scenario 
builder

�	
� � ���
���� �� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

New opportunities to study RES-integration solutions
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In a nutshell
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1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in 
multi-year distribution planning

3. Approximation methods for computing the multi-year electrical 
network state

4. Case studies

5. Conclusion and further work
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Problem of the computation time in network planning

Which time step size for studying RES-integration solutions?

The smallest as possible because:

• network constraints are defined over 10 minutes

• RES power can vary in a few seconds/minutes

Time step size considered here: ΔT = 10 minutes              

Load-flow 
process f

)( mnX  )( lnY 

m = number of input variables
l = number of output variables
n = number of time steps = number of load-flows

n = 52560 load-flows 
per year

tcomput ≈ 3 minutes
per year

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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Problem of the computation time in network planning

tcomput ≈ 3 minutes
per year

Study a strategy over a 10-year scenario ≈ 30 minutes

Study a strategy over 200 10-year scenarios ≈ 4 days

Optimize a multi-variable strategy with 50 candidate points ≈ 6 months

Compare 10 optimized strategies ≈ 5 years

Load-flow 
process f

)( mnX  )( lnY 

m = number of input variables
l = number of output variables
n = number of time steps = number of load-flows
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Problem of the computation time in network planning

tcomput ≈ 3 minutes
per year

Study a strategy over a 10-year scenario ≈ 30 minutes

Study a strategy over 200 10-year scenarios ≈ 4 days

Optimize a multi-variable strategy with 50 candidate points ≈ 6 months

Compare 10 optimized strategies ≈ 5 years

Load-flow 
process f

)( mnX  )( lnY 

m = number of input variables
l = number of output variables
n = number of time steps = number of load-flows
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Performing exact load-flows is not suitable.
It is necessary to reduce computation time while 

providing accurate results.
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Options to reduce computation time in network planning

Option 1: increase the time step size.

• Commonly used to study RES-integration solutions with ΔT = 30 min or 1 hour.

• Easy to be implemented.

• High loss of accuracy compared with the time saving.

n exact
load-flows

)( mnX  )( lnY 

n* exact
load-flows

)*( mnX  )*( lnY 

n* factor of n

Subsampling
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Options to reduce computation time in network planning

Option 2: simplify the load-flow equations 
using hypotheses and/or intrusive approximation techniques.

• Often used to study network stability and the statistical impacts of input variables.

• Efficiency depending on:
– the hypotheses,

– the intrusive approximation techniques.

n exact
load-flows

)( mnX  )( lnY 

n simplified
load-flows

)( mnX  )(
~

lnY n* exact
load-flows

)*( mnX  )*( lnY 

n* factor of n

Intrusive approximationSubsampling
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Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process 
using non-intrusive approximation techniques.

• Often used in application domains when the observed phenomenon is not explicit,
but rarely used in network studies.

• Efficiency depending on:
‒ the sampling method used to select the points where the exact model has be evaluated,

‒ the approximation method used to build the surrogate model based on the evaluation points.
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 �

Approximation 
method

n exact
load-flows

)( mnX  )( lnY 

n approximate
load-flows

)( mnX  )(
~

lnY 

n* exact 
load-flows

Sampling method

)*(* mnX  )*(* lnY 

n* << n

n simplified
load-flows

)( mnX  )(
~

lnY n* exact
load-flows

)*( mnX  )*( lnY 

n* factor of n

Non-intrusive approximation

Intrusive approximationSubsampling
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Subsampling Intrusive approximation

Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process 
using non-intrusive approximation techniques.

• Often used in application domains when the observed phenomenon is not explicit,
but rarely used in network studies.

• Efficiency depending on:
‒ the sampling method used to select the points where the exact model has be evaluated,

‒ the approximation method used to build the surrogate model based on the evaluation points.
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Approximation 
method

n exact
load-flows

)( mnX  )( lnY 

n approximate
load-flows

)( mnX  )(
~

lnY 

n* exact 
load-flows

Sampling method

)*(* mnX  )*(* lnY 

n* << n

n simplified
load-flows

)( mnX  )(
~

lnY n* exact
load-flows

)*( mnX  )*( lnY 

n* factor of n

Non-intrusive approximation
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General procedure to estimate a scalar variable y = f(x)
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Select a sampling
method and an 
approximation 

method

STEP 1

)  (
~

lnY )  ( mnX 

?

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

58

General procedure to estimate a scalar variable y = f(x)
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)  *(* mnX 

)  (
~

lnY )  ( mnX 

Build an 
experimental

design using the 
sampling method

STEP 2

Select a sampling
method and an 
approximation 

method

STEP 1

?

with n* << n
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General procedure to estimate a scalar variable y = f(x)
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)  *(* mnX 

)  (
~

lnY )  ( mnX 

Build an 
experimental

design using the 
sampling method

STEP 2

Select a sampling
method and an 
approximation 

method

STEP 1

?

)*(* lnY 
STEP 3 Perform n* exact 

calculations

f
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General procedure to estimate a scalar variable y = f(x)
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)  *(* mnX 

)  (
~

lnY )  ( mnX 

Build an 
experimental

design using the 
sampling method

STEP 2

Select a sampling
method and an 
approximation 

method

STEP 1

?

)*(* lnY 
STEP 3 Perform n* exact 

calculations

f

Estimate the parameters of 
the surrogate model using
the approximation method

STEP 4

*f

) *(* mnX  )  *(* lnY 
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General procedure to estimate a scalar variable y = f(x)
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)  *(* mnX 

)  (
~

lnY )  ( mnX 

Build an 
experimental

design using the 
sampling method

STEP 2

Select a sampling
method and an 
approximation 

method

STEP 1

)*(* lnY 
STEP 3 Perform n* exact 

calculations

f

Estimate the parameters of 
the surrogate model using
the approximation method

) *(* mnX  )  *(* lnY 

STEP 4

) ( mnX  Perform n
approximate
calculations

STEP 5

*f

*f
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General procedure to estimate a scalar variable y = f(x)
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)  *(* mnX  )*(* lnY 

) ( mnX  )  (
~

lnY )  ( mnX 

STEP 3

Estimate the parameters of 
the surrogate model using
the approximation method

Perform n
approximate
calculations

STEP 4

STEP 5

Build an 
experimental

design using the 
sampling method

STEP 2 Perform n* exact 
calculations

*f

Select a sampling
method and an 
approximation 

method

STEP 1

f

*f

) *(* mnX  )  *(* lnY 

Problem: in our work, 
y is 2(b+1)-

dimensional where b
is the number of 

buses in the network. 
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General procedure to estimate a vector variable y = f(x)
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)  *(* mnX 

) *(* qnZ 

) ( mnX  )  (
~

lnY )  ( mnX 

STEP 3

Order

Compute the 
parameters

W

q

Do PCA

Perform n 
approximate
calculations

STEP 5

STEP 6

Build an 
experimental

design using the 
sampling method

STEP 2 Perform n* exact 
calculations

Select a sampling
method and an 
approximation 

method

STEP 1
Find the 
principal 

components
WYYZ ).*(* 1

f

2

*

2

* %9,99 YZ  

)  *(* mnX 

STEP 4

)*(* lnY 

Estimate the parameters of 
the surrogate model using
the approximation method

Perform n
approximate
calculations

*f

*f

Principal 
Component Analysis 
(PCA) to reduce the 

number of variables to 
be estimated:

q << l
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General procedure to estimate a vector variable y = f(x)
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)  *(* mnX 

) *(* qnZ 
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Do reverse 
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experimental
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STEP 4

)*(* lnY 
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Estimate the parameters of 
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General procedure to estimate a vector variable y = f(x)
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General procedure to estimate a vector variable y = f(x)
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Approximation 
method

(Fast) approximate
load-flow process)( mnX  )(

~
lnY 

(Slow) exact 
load-flow process

Sampling
method

)*(* mnX  )*(* lnY 

n* << n

• Nearest-Neighbor Interpolation (NNI)
• Polynomial Regression (PR)
• Kriging (K)

• Pruned Factorial Designs (PFD)
• Mean factorial-based designs (MFD)
• Latin Hypercube Samples (LHS)

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion



67

The most efficient 
techniques
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Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based design
Polynomial Regression + Latin Hypercube Sample
Kriging + Latin Hypercube Sample

Case 1
Case 2
Case 3

Approximation 
error

Computation time
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Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based design
Polynomial Regression + Latin Hypercube Sample
Kriging + Latin Hypercube Sample

Case 1
Case 2
Case 3
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Results of the comparison of the approximation techniques

Nearest-Neighbor Interpolation + Mean factorial-based design
Polynomial Regression + Latin Hypercube Sample
Kriging + Latin Hypercube Sample
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In this case study, very satisfactory results are 
obtained by Polynomial Regression and Kriging 
when combined with Latin Hypercube Samples.
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Final procedure to estimate the network state over one year
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Surrogate 
load-flow 
process

)( mnX  )(
~

lnY 

+ validation on a 200-point sample

= 400 exact load-flows

+ validation on the same sample

= 200 exact load-flows = 52 560 exact load-flows

1st trial 2nd trial Exact calculations
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General performances of the proposed procedure

Proposed procedure To be compared with:

Error

Voltage < 150 V Un = 20 kV

Current < 5 A 185 A < In < 615 A

Power losses < 1 % Eloss ≈ 200-600 MWh

Total apparent 
power < 200 kVA 20 MVA < Sn < 72 MVA

Time saving 8 to 35! 3 or 6 with time subsampling

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

72

Network + DSO 
simulator

DSO’s decision 
analysis

MV and LV 
network state

Initial 
network

Variables

Scenario

Costs

Scenario 
parameters

Fixed 
planning 
strategy

ConstraintsActions

Technical 
outputs

Multi-variable 
planning 
strategy

Economic 
analysis

Multi-year 
scenario 
builder

Interactions 
between 

MV and LV 
networks

�	
����� ��� ���� � 
� ��� � 
 �

Define multi-variable 
planning strategies 

including RES-
integration solutions

Use stochastic 
scenarios of RES 

arrivals

Use a LV network 
model

DSO’s behavior

Uncertainty on 
the arrivals of 

new RES

In a nutshell

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion

Use approximation 
methods to obtain fast 
and accurate load-flows

Computation 
time
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Use approximation 
methods to get fast and 

accurate load-flows

For a given computation time, 
about 20 times more scenarios can be studied 

with a very limited loss of accuracy.
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Considered studies

1. Impact of the minimal tangent phi of the MV producers

2. Impact of the “Last In First Out” generation curtailment

3. Optimization of the current French planning strategy
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Year 10

Load: +2 %/y

Gen.: 20-22 MW

Simulations over
200 scenarios

Use of an 
optimization 

algorithm

Year 0

Load: 11 MVA

Generation: 0

S
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Study 1: impact of the minimal tangent phi of the MV producers

Variables: θ = tan(φ)min = tan(φ)min,DSO

Possible impacts

Less network reinforcement 

More MV producers connected 
to feeders supplying loads

More or less power losses

Bigger power conversion chain 
for all the MV producers
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Fixed 
strategy

θ

R1: decrease the fixed tan(φ) reference of the new producer, with tan(φ) ≥ tan(φ)min.

R2: decrease the fixed tan(φ) reference of the existing MV producers, with tan(φ) ≥ tan(φ)min,DSO.

Current 
planning 
strategy

tan(φ)min Which impact on the 
Net Present Cost?
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High dispersion of the scenario costs
compared with the average cost: impossible 

to say which value of tan(φ)min is optimal. 

The values of tan(φ)min between –0.2 and 0 
have a similar average impact on the costs. 

),( SNPC 
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The proposed planning approach makes it possible 
to assess the techno-economic impacts of the 

RES-integration solutions.
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Study 3: optimization of the current planning strategy

Why should we use an optimization process?
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N = 200 scenarios 
per candidate point

tcomput ≈ 4 hours 
per candidate point

Accuracy on the 
average cost: δ = 2 % 

Considering 10 candidate values for each decision variable:

• Optimize a 1-variable strategy ≈ 40 hours

• Optimize a 2-variable strategy ≈ 16 days

• Optimize a 3-variable strategy ≈ 5 months
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Study 3: optimization of the current planning strategy

General problem                                                             

Studied problem

Objective f
• Economic: Net Present Cost, Regret... 

• Quality: Number of weakly-supplied consumers...

• Scenario uncertainty: Mean, Quantile…

Constraints g
• Finite space of the decision variables,

• Quality on the network…

Decision variables θ
• Number of variables

• Continuous or discrete

)(min  f

0)(s.t. g
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Study 3: optimization of the current planning strategy

General problem                                                             

Studied problem

Objective f
• Economic: Net Present Cost, Regret... 

• Quality: Number of weakly-supplied consumers...

• Scenario uncertainty: Mean, Quantile…

Constraints g
• Finite space of the decision variables,

• Quality on the network…

Decision variables θ
• Number of variables: 1

• Continuous or discrete

)(min  f

0)(s.t. g

 0;6.0)tan( min  

 ),()( SNPCEf S  S
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Study 3: optimization of the current planning strategy

Studied problem

Problem particularities?

• No explicit formulation of f

• Noisy evaluation results

• Expensive-to-evaluate model

Optimization algorithm used:

Informational Approach to Global Optimization (IAGO)

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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Mean of the evaluations
Mean of the kriging model
95% CI of the kriging model
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Estimation of the objective function Allocation of the evaluations
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Study 3: optimization of the current planning strategy

After 200 evaluations:

Mean of the evaluations
Mean of the kriging model
95% CI of the kriging model
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Estimation of the objective function Allocation of the evaluations
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Study 3: optimization of the current planning strategy

After 500 evaluations:

Mean of the evaluations
Mean of the kriging model
95% CI of the kriging model
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Estimation of the objective function Allocation of the evaluations
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Study 3: optimization of the current planning strategy

After 1 000 evaluations:
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Study 3: optimization of the current planning strategy

After 5 000 evaluations:

Mean of the evaluations
Mean of the kriging model
95% CI of the kriging model
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Estimation of the objective function Allocation of the evaluations

83 scenarios per candidate point 
without optimization
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Study 3: optimization of the current planning strategy

After 5 000 evaluations:

Mean of the evaluations
Mean of the kriging model
95% CI of the kriging model
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Estimation of the objective function Allocation of the evaluations

83 scenarios per candidate point 
without optimization

Algorithms such as IAGO are suitable for 
the optimization of expensive-to-evaluate functions 

in presence of noisy evaluations. 
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1. Scope and motivation

2. Novel framework for the study of RES-integration solutions in 
multi-year distribution planning

3. Approximation methods for computing the multi-year electrical 
network state

4. Case studies

5. Conclusion and further work
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Need to modify the distribution planning methods 
to assess the techno-economic impacts 

of RES-integration solutions.
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Network reinforcement = Reinforcement + alternatives =                ?

TODAY TOMORROW
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Points often neglected in the existing planning approaches

�	
�� � ��� ��� � 
�� 
 
�� ��� ��
� � ��

1. Scope 2. Framework 3. Approximation 4. Case studies 5. Conclusion
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MV and LV 
networks

DSO’s 
behavior

Uncertainty on 
the arrivals of 

new RES
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Proposed planning approach
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Proposed planning approach
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Proposed simulation tool
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Possible case studies
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Adapt the proposed methods for an 
industrial application by the DSOs

Further work

Improve the procedure used to create 
profiles of consumption/generation
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