03/11/15

Héloïse DUTRIEUX

Méthodes pour la planification pluriannuelle des réseaux de distribution. Application à l'analyse technico-économique des solutions d'intégration des énergies renouvelables intermittentes.

- · Doctoral advisors
 - Bruno François (L2EP EC Lille)
 - Gauthier Delille (EDF R&D)
 - Julien Bect (L2S CentraleSupélec)
- Project ANR APOTEOSE (Analyse Probabiliste et nouveaux Optimums Technico-EcOnomiques des Systèmes Electriques en présence de taux de pénétration élevés d'énergies intermittentes)

- 1. Scope and motivation
- 2. Novel framework for the study of RES-integration solutions in multi-year distribution planning
- 3. Approximation methods for computing the multi-year electrical network state
- 4. Case studies
- 5. Conclusion and further work

1. Scope and motivation

- 2. Novel framework for the study of RES-integration solutions in multi-year distribution planning
- 3. Approximation methods for computing the multi-year electrical network state
- 4. Case studies
- 5. Conclusion and further work

1. Scope

*LZEP SteDF

4. Case studies

		Current planning	
RES-	Operating limits?	No	
integration solutions	Operating costs?	Power losses Energy not supplied	
	Studied scenarios	« Worst case »	
Network planning methods	Constraint indicators	Boolean (yes or no)	
	Objective	Prevent 100 % of the networks constraints	

1. Scope

Current planning Requirements with RES Operating No Yes, in energy and/or duration **RES**limits? integration + Non-negligible costs Power losses Operating solutions costs? Energy not supplied depending on the constraints Studied « Worst case » scenarios **Network** Boolean Constraint planning indicators (yes or no) methods Prevent 100 % of the Objective networks constraints

		Current planning	Requirements with RES
RES-	Operating limits?	No	Yes, in energy and/or duration
integration solutions	Operating costs?	Power losses Energy not supplied	+ Non-negligible costs depending on the constraints
Network planning methods	Studied scenarios	« Worst case »	Multi-year profiles of generation/consumption
	Constraint indicators	Boolean (yes or no)	Statistical (frequency, severity, duration)
	Objective	Prevent 100 % of the networks constraints	Reach a tradeoff between costs and quality of supply

ALZEP SCOF

- In:
- Future events sometimes assumed to be perfectly known
- Interactions between MV and LV networks generally neglected
- Economic analysis sometimes incomplete or missing

3. Approximation

4. Case studies

Conclusion

17

41#VFRSH#DQG#PRWLYDWLRQ

OBJECTIVES

- 1. Scope and motivation
- 2. Novel framework for the study of RES-integration solutions in multi-year distribution planning
- 3. Approximation methods for computing the multi-year electrical network state
- 4. Case studies
- 5. Conclusion and further work

Generate multi-year scenarios:

- Features of new RES producers
- 10-minute profiles of generation, consumption and voltage reference

Model the Distribution System Operator (DSO)'s behavior.

Planning strategy

the sequence of the decision analyses made by the DSO in everyday life, as well as the associated decisions, when the DSO notices an <u>event</u> that may require some adaptations of the existing network.

Examples of event

connection of a new user, too many weakly-supplied consumers, constraint limit violations, expected load growth in the coming years, etc.

NL2EP SCOF

Simulate the network evolutions on a year-by-year basis:

- 1. <u>Apply the planning strategy</u> at the beginning of the year to remove limit violations and accommodate all LV and MV producers.
- 2. <u>Estimate the network state</u> over the whole year on the basis of 10-minute generation/consumption profiles.

Simulate the network evolutions on a year-by-year basis:

- 1. <u>Apply the planning strategy</u> at the beginning of the year to remove limit violations and accommodate all LV and MV producers.
- 2. <u>Estimate the network state</u> over the whole year on the basis of 10-minute generation/consumption profiles.
 - a. MV network state: voltages, currents, losses and total apparent power
 - b. LV network state: extreme voltages and number of weakly-supplied LV consumers

Sta hold	ke- lers	Investment and operating costs	
DS	60	Upgraded and new MV lines Upgraded HV/MV transformers Upgraded MV/LV transformers MV line losses	Gross Present Cost $GPC = \sum_{k=1}^{T} \left(\frac{I_k}{(1+i)^{k-1}} + \frac{C_k}{(1+i)^{k-1}} \right)$
M produ	V Icers	Upgraded and new MV lines Upgraded HV/MV transformers Power Conversion System (PCS) oversizing PCS maintenance	$\left\{ \begin{array}{c} \sum_{k=1}^{k} \left(\left(1+t \right) \right) \\ \text{Net Present Cost} \end{array} \right.$
L\ produ	V Jcers	Only if connected to dedicated feeders: Upgraded MV/LV transformers New LV dedicated feeders (New MV lines)	$\int NPC = \sum_{k=1}^{T} \left(\frac{I_k}{(1+i)^{k-1}} + \frac{C_k}{(1+i)^{k-1}} - \frac{V_k}{(1+i)^T} \right)$

*LZEP SCEDF

Example of application: the current French planning strategy

Example of application: the current French planning strategy

Studied scenario

10-minute profiles of generation, consumption and voltage reference

Example of application: the current French planning strategy

Technical results

Example of application: the current French planning strategy

Economic results

New opportunities to study RES-integration solutions

Problem of the computation time in network planning

Which time step size for studying RES-integration solutions?

The smallest as possible because:

- network constraints are defined over 10 minutes
- · RES power can vary in a few seconds/minutes

Time step size considered here: $\Delta T = 10$ minutes

<i>n</i> = 52560 load-flows per year
<i>t_{comput}</i> ≈ 3 minutes per year

Compare 10 optimized strategies ≈ 5 years

Options to reduce computation time in network planning

Option 1: increase the time step size.

- Commonly used to study RES-integration solutions with $\Delta T = 30$ min or 1 hour.
- Easy to be implemented.
- · High loss of accuracy compared with the time saving.

1. Scope 2. Framework 3. Approximation 4. Case studies	5. Conclusion
61#DSSUR [LP DWLR Q #P HWKRGV	54

Options to reduce computation time in network planning

Option 2: simplify the load-flow equations using hypotheses and/or intrusive approximation techniques.

- Often used to study network stability and the statistical impacts of input variables.
- Efficiency depending on:
 - the hypotheses,
 - the intrusive approximation techniques.

Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process using non-intrusive approximation techniques.

- Often used in application domains when the observed phenomenon is not explicit, but rarely used in network studies.
- · Efficiency depending on:
 - the sampling method used to select the points where the exact model has be evaluated,
 - the approximation method used to build the surrogate model based on the evaluation points.

Options to reduce computation time in network planning

Option 3: build a surrogate model of the load-flow process using non-intrusive approximation techniques.

- Often used in application domains when the observed phenomenon is not explicit, but rarely used in network studies.
- Efficiency depending on:
 - the sampling method used to select the points where the exact model has be evaluated,
 - the approximation method used to build the surrogate model based on the evaluation points.

General procedure to estimate a <u>scalar</u> variable y = f(x)

General procedure to estimate a <u>scalar</u> variable y = f(x)

General procedure to estimate a <u>scalar</u> variable y = f(x)

General procedure to estimate a <u>vector</u> variable y = f(x)

General procedure to estimate a <u>vector</u> variable y = f(x)

Results of the comparison of the approximation techniques

eDF

Final procedure to estimate the network state over one year

General performances of the proposed procedure

		Proposed procedure
Error	Voltage	< 150 V
	Current	< 5 A
	Power losses	< 1 %
	Total apparent power	< 200 kVA
Time saving		8 to 35!

To be compared with:
$U_n = 20 \text{ kV}$
185 A < I _n < 615 A
<i>E_{loss} ≈</i> 200-600 MWh
20 MVA < S _n < 72 MVA
or 6 with time subsampling

- 1. Scope and motivation
- 2. Novel framework for the study of RES-integration solutions in multi-year distribution planning
- 3. Approximation methods for computing the multi-year electrical network state

4. Case studies

5. Conclusion and further work

		4. Case studies	5. Conclusion
71 # D V H # V	WXGIHV		77

Study 1: impact of the minimal tangent phi of the MV producers

Study 2: impact of the "Last In First Out" generation curtailment

79

4. Case studies

Study 3: optimization of the current planning strategy

General problem

 $\min_{\theta} f(\theta)$
s.t. $g(\theta) \le 0$

Objective f

- Economic: Net Present Cost, Regret...
- Quality: Number of weakly-supplied consumers...
- Scenario uncertainty: Mean, Quantile...

Constraints g

- Finite space of the decision variables,
- Quality on the network...

Decision variables $\boldsymbol{\theta}$

- Number of variables
- Continuous or discrete

71#FDVH#VWXGIHV

Study 3: optimization of the current planning strategy

4. Case studies

83

Study 3: optimization of the current planning strategy

Optimization algorithm used:

Informational Approach to Global Optimization (IAGO)

Study 3: optimization of the current planning strategy

Study 3: optimization of the current planning strategy

4. Case studies

After 500 evaluations:

Study 3: optimization of the current planning strategy

Study 3: optimization of the current planning strategy

4. Case studies

ALZEP Stede

Further work

SXEOLFDWIRQV

- H. Dutrieux, G. Delille et B. François, "An innovative method to assess solutions for integrating renewable generation into distribution networks over multi-year horizons", *Proc. 23rd International Conference on Electricity Distribution (CIRED)*, article 1103, juin 2015.
- H. Dutrieux, I. Aleksovska, J. Bect, E. Vazquez, G. Delille et B. François, "The Informational Approach to Global Optimization in presence of very noisy evaluation results. Application to the optimization of renewable energy integration strategies", *Proc.* 47^{èmes} Journées de Statistique de la SFdS (JDS), article 199, juin 2015.
- H. Dutrieux, G. Delille, B. François et G. Malarange, "Assessing the Impacts of Distribution Grid Planning Rules on the Integration of Renewable Energy Sources", *Proc. IEEE PowerTech*, article 464270, juillet 2015.

Wkdqn | rx iru# | rxu dwwhqwlrq