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 Wind and photovoltaic (PV) power production are highly
intermittent due to the influence of meteorological conditions
on the primary energy resource.

I. Background: Problem, Goals and Methods        

I.1 Problem: Variability of RES  

 Accurate forecasts of renewable energy generation are useful for 
 Producers: Making bids in electricity markets, Planning maintenance of wind farms, etc.; 
 Grid operators: Economic dispatch, planning power reserve, planning power exchanges 

with interconnections and other stakeholders, etc.

 Operate the power system in a secure and economic way.
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 Intermittent RES energy production is predictable thanks to weather and statistical tools.

I.1 Problem: Prediction Errors

 However, forecasting errors can not be eliminated even with the best forecasting tools. 

I. Background: Problem, Goals and Methods        

Uncertainty caused by 
forecasting errors



4I.1 Problem: Power Reserve to Cover the Uncertainty

Pref
Pref

Pref is given by the system operators (power dispatch) 

 Today the consumption/production balancing and OR provision are performed by 
conventional generators.

Uncertain
Variable 
Reserve 

Constant 
Reserve

 To cover the risk of an unexpected RES generation losses or load increasing, operating
reserve (OR) is scheduled one day ahead.

 Massive RES generators increase the system uncertainty of power production and so the
difficulties to maintain the system security level.

 To cover the risk: Additional OR is needed !

How much ? How to provide it ?

I. Background: Problem, Goals and Methods        



5I.2 Applied method

 Active PV Generators (PV AGs): with an additional 
storage system (batteries and super-capacitors);
 MGTs: Micro gas-turbines.

I. Background: Problem, Goals and Methods        

Microgrid: From a centralized network to a decentralized network.

Distributed generators (DG) 
 MGTs: constant power sources, with 

controlled power output; 
 PV AGs: can provide ancillary services 

thanks to storage devices.

 Uncertainty challenges of RES 
integration into the Microgrid ?



6I.3 General Organization of Energy Management System (EMS) 

 Microgrid supervision can be analyzed in different timing scales and functions. 

I. Background: Problem, Goals and Methods        

 Focuses on day-ahead optimization of the network operation. 



7I.4 Goals and Methods for the Study Case

Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimization Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor

I. Background: Problem, Goals and Methods        

 Active PV Generators (PV AGs): with an additional 
storage system (batteries and super-capacitors);
 MGTs: Micro gas-turbines.



8Roadmap: Part II

Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimization Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor



9II.1 Data Management and Predictive Analysis (1)
II. Uncertainty Analysis and Forecasting of PV Power and Load

 Data collecting for database building  

 PV data collecting: (Sunways) three PV inverters (3 kW each), Centrale de Lille

 Load data collecting (www.rte‐france.com)

 Meteorological data collecting (www.wunderground.com)

0
10
20
30
40
50
60
70

0
5

10
15
20
25

Pr
ec

ip
ita

tio
n 

(m
m

)

Te
m

pe
ra

tu
re

 (°
C

)

Month 

Data from 2000 to 2012
Average precipitation Average high in °C Average low in °C



10
II. Operating Reserve (OR) Quantification to Cover Uncertainty

 Data mining and predictive analysis (PV power) 

II.1 Data Management and Predictive Analysis (2)

 Mathematical Modeling of PV Generator 
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II. Uncertainty Analysis and Forecasting of PV Power and Load

 PV power and irradiance in 2010
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II.2 PV Power variability quantification
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 Forecasting with Artificial Neural Networks (ANN)
 PV forecast database 

PV power data

Meteorological data
Solar irradiation 
Humidity  
Air pressure 
Wind speed   
Temperature 

PV power output 
AC voltage 
DC voltage  

Dispatch data into 3 
sets  

Validation set  

Test set  

Training set  

DATA BASE  

 Load forecast database
Load demand data

Meteorological data
Solar irradiation 
Humidity  
Air pressure 
Wind speed   
Temperature 

Dispatch data into 3 
sets  

Validation set  

Test set  

Training set  
Historical load data  

DATA BASE 
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II.3 PV Power and Load Forecasting with ANN (1)

 A three-layer ANN

 Data description: PV power and Load forecasting 
databases  

 Error Computing Method 

 Data normalization 
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nRMSE: normalized Root Mean Square Error 
nMAE: the normalized Mean Absolute Error

II. Uncertainty Analysis and Forecasting of PV Power and Load



13II.3 PV Power and Load Forecasting with ANN (2)
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A three-layer ANN
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Real Measured PV Power
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nRMSE [%] nMAE [%]
Training Set 6.09 3.69

Validation Set 5.58 3.13
Test Set 5.95 3.12

Errors of the PV power forecasting with ANN.
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II. Uncertainty Analysis and Forecasting of PV Power and Load
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Load Forecast 
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II.3 PV Power and Load Forecasting with ANN (3)
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A three-layer ANN

nRMSE [%] nMAE [%]
Training Set 3.18 2. 45

Validation Set 3.57 2.76
Test Set 3.67 2.84

Errors of the Load forecasting with ANN.
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II. Uncertainty Analysis and Forecasting of PV Power and Load
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Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimization Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor

Roadmap: Part III
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III. Operating Reserve (OR) Quantification to Cover Uncertainty

 Frequency control and energy balancing 
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In this thesis, the OR is defined as the real power that can be called on instantaneously for 
the imbalance between power generation and load demand (Primary and secondary 
reserve).

III.1 Calculation of OR by considering RES uncertainties (1)

Deploying of the primary, secondary and tertiary regulation of frequency.



17III.1 Calculation of OR by considering RES uncertainties (2)
III. Operating Reserve (OR) Quantification to Cover Uncertainty

 The OR must be precisely quantified in order to maintain a specified level of system 
security with a minimum cost. 

Most conventional utilities have adopted deterministic criteria by considering only two 
sources of uncertainty: 

 the possibility of multiple large generators failing: low probability but high impact; 
 and load forecast errors: often but usually relatively small.

 Deterministic methods do not match the stochastic nature of the OR quantification 
problem. 

 Probabilistic methods are adapted to the stochastic characteristics of RES based 
generators and loads. They can set a certain security level. 
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III. Operating Reserve (OR) Quantification to Cover Uncertainty

 Recent examples of probabilistic methods: 

 Probabilistic Model 

Fixed Risk Indices

Uncertainty Analysis

Load Forecasting 
Uncertainty 

PV Power Forecasting 
Uncertainty 

Net Demand (ND) Uncertainty  
t

F
t
F

t
F PVLND   

Risk/Reserve Curve 

Operating Reserve Quantification 

 Eastern Wind Integration and Transmission Study (EWITS): focused on the operational impacts of 
various wind penetrations. Load variability and wind power variability are considered independent [1]. 

 Western Wind and Solar Integration Study (WWSIS): discussed the OR requirement that 
dynamically relied on both the load and wind penetration levels [1].

 Other probabilistic methods

 General Scheme for OR quantification 

 Decisions made under uncertainty must be informed by probabilistic information in order 
to correctly quantify the risk. 

III.1 Calculation of OR by considering RES uncertainties (3)

[1]: L. E. Jones, Renewable energy integration: practical management of variability, uncertainty, and flexibility in power grids: Academic Press, 2014.



19III.2 Net Demand (ND) Uncertainty Analysis (1)
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III. Operating Reserve (OR) Quantification to Cover Uncertainty
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20III.2 Net Demand (ND) Uncertainty Analysis (2)

 Second Method: Calculation from the PV Power and the Load Forecast Errors Estimation.
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III. Operating Reserve (OR) Quantification to Cover Uncertainty
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21III.3 Uncertainty Assessment

 

Lower bound (Blower)

Normal Inverse 
Cumulative 
Distribution 

Function (F-1) 

Normal 
Probability 

Density Function 
(F(B|µND,σND)) 

Upper bound (Bup) 

+ 
+ 

_ 
+ 

ND
h 

ND
h 

Net Demand Forecast 

241
~..., ,~

 hh DNDN  
max_

~
hDN  

min_
~

hDN  

x: Desired probability 

ND
hpdf  




 


deBx
B

ND
h

ND
h

ND
h

ND
h

ND
h

 




2

2

)(2
)(

2
1),(F

 xBFBxB ND
h

ND
h

ND
h

ND
h  ),(:),(F 1- 

 Hourly ND uncertainty assessment

0 4 8 12 16 20 24
0

5

10

15

20

Time [hours]

PV
 u

nc
er

ta
in

ty
 [k

W
]

 

 
90% probability

80% probability

70% probability

60% probability

Forecasted PV

0 4 8 12 16 20 24
0

20

40

60

80

100

120

Time [hours]

L
oa

d 
D

em
an

d 
U

nc
er

ta
in

ty
 [k

W
]

 

 

90% probability
80% probability
70% probability
60% probability
Forecasted Load

0 4 8 12 16 20 24
0

20

40

60

80

100

Time [hours]

N
et

 D
em

an
d 

U
nc

er
ta

in
ty

 [k
W

]

 

 

90% probability
80% probability
70% probability
60% probability
Net Forecasted

III. Operating Reserve (OR) Quantification to Cover Uncertainty

Bound margin:

Probability:
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23III.4 OR Quantification
 Power reserve quantification





PRhhh pdfPLprobLOLP  )d()0( =LOLP represents the probability that load exceeds PV power.

III. Operating Reserve (OR) Quantification to Cover Uncertainty
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Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimization Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor

Roadmap : Part IV



25IV.1 Optimal OR Dispatching Strategies 
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IV. Optimal Operating Reserve (OR) Dispatching Strategies

 Day-ahead PV power forecasting
 Day-ahead load forecasting 
 Statistic OR quantification

 One Day-ahead OR dispatching 
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26IV.2 Non-linear Constraints

 Security: OR assessment with x % of LOLP;

 Power balancing:

Maximization of RES usage: considering the battery capacity limitation (more PV power, larger 
battery storage !)
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27IV.3 Management Strategy of OR Dispatching 
IV. Operating Power Reserve Dispatching

 Two considered scenarios

 OR dispatching strategies according to power sources:
 First strategy: OR on three MGTs only
 Second strategy: OR on three MGTs and PV AGs including batteries

According to PV energy during the day Uncertainty from 
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28IV.4 OR Dispatching Strategies
IV. Operating Power Reserve Dispatching

More details can be found: X. Yan, D. Abbes, B. Francois, and Hassan Bevrani “Day-ahead Optimal Operational and Reserve Power Dispatching 
in a PV-based Urban Microgrid,” EPE 2016, ECCE Europe, Karlsruhe/ Germany.
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Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimal Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor

Roadmap : Part V



30V.1 Day-ahead Optimal OR Planning on MGTs
V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)
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 Focus on the design of the microgrid central EMS. 
 Unit commitment (UC) problem with dynamic programming (DP) is developed in order to 

reduce the economic cost and CO2 equivalent emissions.

Operational and Reserve 
Power Dispatching 
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 UC Problem: is an operation scheduling function. 

V.2 Unit Commitment (UC) Problem

 Problem: optimal operation of a cluster of MGTs (three in our case)

MGT1(30kW)

MGT2(30kW)

MGT3(60kW)

Three MGTs with different 
characteristics 

Number of states Generators states

1 δ1=1; δ2=1; δ3=1

2 δ1=1; δ2=1; δ3=0

3 δ1=1; δ2=0; δ3=1

4 δ1=1; δ2=0; δ3=0

5 δ1=0; δ2=1; δ3=1

6 δ1=0; δ2=1; δ3=0

7 δ1=0; δ2=0; δ3=1

8 δ1=0; δ2=0; δ3=0

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)



32V.3 Optimization Goals

 Economic criteria: minimize the total fuel cost;

 Environmental criteria: minimize the equivalent CO2 emission;

 Best compromise criteria: make a compromise of economic and environmental criteria.
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M: the number of MGTs;
T: the number of operational steps.

the proportion rate, from 0 to 1

Fuel cost Start/stop penalty

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)
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 DP: Systematically evaluates a large number of possible decisions in a multi-step problem 
considering the "transition costs".

Start 

t=1 

t=T 

Stop 

t=t-1 

Optimization: calculate the minimum J(t) with 
vectors x(t) and u(t), using recursive equation 

F(t, x(t), u(t)). 

Calculate F(T, x(T), u(T)) with x(T) 
and u(T) to minimize J(T).

F1(1) F1(2) …  F1(T-1) F1(T) 
F2(1) F2(2)…  F2(T-1) F2(T) 
F3(1) F3(2)… F3(T-1) F3(T)
F4(1) F4(2)…  F4(T-1) F4(T) 
… . … . … . … . 

F1(t) F1(T) 
F2(t) F2(T) 
F3(t) F3(T) 
F4(t) F4(T) 
… . … . 

F1(T) 
F2(T) 
F3(T)
F4(T) 
… . 

No 

Yes 

V.3 Dynamic Programming (DP)

Multistage decision process formulation with backward recursion:

State

back-track 
optimal path 

 An evaluation of all possible configurations in each time step (Stages and States);
 A “back-track” operation from the end back to the beginning (Recursive Optimization). 

Stage

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)



34V.4 Case Study and Simulation Results (1)

 In this case: rated load (110 kW), rated PV power (55 kW) and the OR (with 1 % of LOLP) 
coming from the net demand uncertainty assessment.
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 Scenario H, sunny day, 269.5 kWh; 
 Scenario L, cloudy day, 128.4 kWh;
 The total battery capacity (150 kWh). 

 The daily load is 1082 kWh. 

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)

 OR calculation with two scenarios. 
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Scenarios Optimization  Criteria Cost (€) Pollution (kg) OR on AG (%) Ebat_Max (kWh)

H 
1st strategy: 
Only MGTs

None 173 1224 0 78.6
Environmental 169 1141 0 78.6

Economic 167 1167 0 78.6
Best compromise 171 1156 0 78.6

H 
2nd strategy: 
MGTs and AGs

None 173 1027 35.4 52.7
Environmental 171 937 35.4 52.7

Economic 168 976 35.4 52.7
Best compromise 170 952 35.4 52.7

None 185 1290 0 132.4
L 1st Environmental 182 1181 0 132.4

strategy Economic 180 1245 0 132.4
Best compromise 183 1195 0 132.4

None 188 1119 11.8 132.4
L 2nd Environmental 184 993 11.8 132.4

strategy Economic 181 1063 11.8 132.4
Best compromise 185 1006 11.8 132.4

V.4 Case Study and Simulation Results (2)
 Day-ahead Operational Planning Results.
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V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)
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Scenarios Optimization  Criteria Cost (€) Pollution (kg) OR on AG (%) Ebat_Max (kWh)

H 
1st strategy: 
Only MGTs

None 173 1224 0 78.6
Environmental 169 1141 0 78.6

Economic 167 1167 0 78.6
Best compromise 171 1156 0 78.6

H 
2nd strategy: 
MGTs and AGs

None 173 1027 35.4 52.7
Environmental 171 937 35.4 52.7

Economic 168 976 35.4 52.7
Best compromise 170 952 35.4 52.7

None 185 1290 0 132.4
L 1st Environmental 182 1181 0 132.4

strategy Economic 180 1245 0 132.4
Best compromise 183 1195 0 132.4

None 188 1119 11.8 132.4
L 2nd Environmental 184 993 11.8 132.4

strategy Economic 181 1063 11.8 132.4
Best compromise 185 1006 11.8 132.4

V.4 Case Study and Simulation Results (2)
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AG

35.4% of OR is
on PV AGs

 Day-ahead Operational Planning Results.

Each PV AG equally 
contributed to the OR

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)



37V.4 Case Study and Simulation Results (2)

 Day-ahead Operational Planning Results.

Scenarios Optimization  Criteria Cost (€) Pollution (kg) OR on AG (%) Ebat_Max (kWh)

H 
1st strategy: 
Only MGTs

None 173 1224 0 78.6
Environmental 169 1141 0 78.6

Economic 167 1167 0 78.6
Best compromise 171 1156 0 78.6

H 
2nd strategy: 
MGTs and AGs

None 173 1027 35.4 52.7
Environmental 171 937 35.4 52.7

Economic 168 976 35.4 52.7
Best compromise 170 952 35.4 52.7

None 185 1290 0 132.4
L Environmental 182 1181 0 132.4

1st strategy Economic 180 1245 0 132.4
Best compromise 183 1195 0 132.4

None 188 1119 11.8 132.4
L Environmental 184 993 11.8 132.4

2nd strategy Economic 181 1063 11.8 132.4
Best compromise 185 1006 11.8 132.4

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)

Cost and pollution 
are increased

Battery size is larger



38V.4 Results (3): MGTs Load Ratio
 H 1st Strategy: OR on MGTs
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Better use of MGTs in their higher 
efficiency operation domain.

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)

Turnoff all 
the MGTs



39V.4 Results (3): Obtained system security
 H 1st Strategy: OR on MGTs
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This is the risk we 
need to face with. 

V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)



40V.4 Results (4): Battery State of Charge  
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V. Day-ahead Unit Commitment (UC) Problem with Dynamic Programming (DP)
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Predictive Analysis for Uncertainty: 
PV power and load forecasting  

Operating Reserve Quantification:
Loss of load probability (LOLP)

Day-ahead Optimal Planning:
Unit commitment problem with 

dynamic programming

OR Dispatching Strategies on 
Generators

A User-friendly EMS and 
Operational Supervisor

Roadmap : Part VI



42VI.1 Application 
VI. A User-friendly EMS and Operational Supervisor 

 
…. 

Adopted 
Methods 
for the 
Urban 

Microgrid 
Simulator  

Environmental, Economic, Best 
Compromise  

LOLP  

Scenarios H&L  

OR Quantify  

Mining  Collecting  

Test  Validation  Training  

Big Data 

Predictive Analysis 

Forecast with ANN

LOLP  

PV Uncertainty 

Load Uncertaitny  

ND Uncertainty Assessment 

Uncertainties 
Assessment for OR 

Quantification 

Constrains  

Unit Commitment   

Dispatching Strategies 

Dynamic Programming 

MGT & PV AG  

Optimization Ceriteria  

Data Collection and 
System Uncertainty 

Analysis  

OR Dispatching 
for UC Problem 

with DP   

 Objective: to provide a complete set of user-friendly GUI to properly model uncertainties and optimal 
manage the details of PV AGs, loads, and MGTs one day-ahead. 



43VI.2 Microgrid EMS Supervisor Frame Design

Main Interfaces Individual Modules 

Data Collect and 
System Uncertainty 

Analysis

 Historical Data Collect for ANN Training
 Day-ahead Data Download: Weather 

Information, Load, and PV Power Data
 PV Power and Load Demand Forecast by 

Using Well Trained ANN

System Uncertainties 
Assessment and OR 

Power Quantification

 PV Power Uncertainty 
 Load Demand Uncertainty
 Net Demand Uncertainty 
 OR Quantification 

Operational and OR 
Dispatching

 Dispatching Strategies
 PV AGs and MGTs Power References 

VI. A User-friendly EMS and Operational Supervisor 
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Main Interfaces Individual Modules 

Data Collect and 
System Uncertainty 

Analysis

 Historical Data Collect for ANN Training
 Day-ahead Data Download: Weather 

Information, Load, and PV Power Data
 PV Power and Load Demand Forecast by 

Using Well Trained ANN

System Uncertainties 
Assessment and OR 

Power Quantification

 PV Power Uncertainty 
 Load Demand Uncertainty
 Net Demand Uncertainty 
 OR Quantification 

Operational and OR 
Dispatching

 Dispatching Strategies
 PV AGs and MGTs Power References 

VI. A User-friendly EMS and Operational Supervisor 
VI.2 Development software
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Main Interfaces Individual Modules 

Data Collect and 
System Uncertainty 

Analysis

 Historical Data Collect for ANN Training
 Day-ahead Data Download: Weather 

Information, Load, and PV Power Data
 PV Power and Load Demand Forecast by 

Using Well Trained ANN

System Uncertainties 
Assessment and OR 

Power Quantification

 PV Power Uncertainty 
 Load Demand Uncertainty
 Net Demand Uncertainty 
 OR Quantification 

Operational and OR 
Dispatching

 Dispatching Strategies
 PV AGs and MGTs Power References 

VI. A User-friendly EMS and Operational Supervisor 
VI.2 Microgrid EMS Supervisor Frame Design



46VI.3 Demonstration
VI. A User-friendly EMS and Operational Supervisor 



47VII. Conclusions and perspectives

 PV power variability and load demand variability are analyzed;
 A probabilistic method for the OR calculation is proposed (with two different kinds of 

ND uncertainty assessment methods);
 The dynamic joint operational and OR dispatching strategies are developed;
 Day-ahead operational and OR planning with DP is proposed by considering different 

optimization strategies;
 A User-friendly EMS and Operational Supervisor is developed. 

 “Big data” for distributed RES uncertainty analysis, prediction for more then one day and 
with multiple time steps, and intraday adjustment;

 Optimization method to improve the battery efficiency and its lifespan;

 Considering load shedding;

 How the uncertainties are propagated in the electrical system. 

 Prospectives

 Contributions



Thank you for your attention !
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