

Stochastic Optimization for Generation Scheduling in a Local Energy Community under Renewable Energy Uncertainty

Xin WEN

Supervisors: Bruno FRANCOIS Dhaker ABBES

L2EP, Centrale Lille, France

Part 1 Introduction: Context, objectives and methods

1.1 Context : High penetration ratio of renewable energy sources (RESs) in local energy communities

Energy and Climate Change

Decarbonization and sustainable development

- □ Increase energy efficiency
 - □ Reduce power flow transmission losses in a large electrical system
 - Cost saving by reducing agents in commercial and operational transactions
- □ Reduce environmental impact
 - □ Substitution by carbon free generation

Local RES based electrical production for local consumption

- Decarbonization, decentralization and democratization of the electricity generation and management.
- □ Emerging of Local Energy Communities (related also with islanded networks and microgrids).
- □ Increasing the participation of RES in the electrical system, introduces **uncertainties** and problems.
 - □ Local energy balancing
 - □ Reliability and operational power reserve
 - □ Economic costs and CO2 abatement
- □ How to integrate RES into operational planning, anticipation and flexibility in energy management systems?

□ Needs for numerical methods that handle **RES uncertainty** in modelling and optimization.

Focus on day-ahead load and RES predictions, uncertainty analysis, and optimization of the network operation.

□ First, we consider the reserve is only provided by MGTs **already in service** (operating below their rated power), or by offline MGTs **with a fast start-up.**

Part 3 Deterministic unit commitment under uncertainty

- \Box The PV self-consumption rate is about 50% (–
- \Box The PV self-production rate is about 25% (

U Without energy management and optimization during the day, a part of the available PV energy will not be consumed locally and will be lost (when power supply > Load demand).

-> Hence the PV self-consumption rate and the PV self-production rate will decrease.

The unused PV power (when the irradiance is high), can be valued by:

23h

2h

5h

40 20

> 0 6h 8h

11h

14h

17h

Time (half hour)

20h

- providing reserve power (scheduled PV limitation or PV curtailment), or

- being saved in a storage (charging mode) in order to be used later (through a discharging mode),

3.7 Generation scheduling by considering N-1 criterion

- \Box The classical *N-1* criterion for the reserve quantification is implemented as following :
 - 1) PV AGs are not seen as reliable generators;
 - 2) Planning of MGTs commitment is calculated without considering PV generation
 - 3) For all committed MGTs, power references are reduced in case of PV production

If the minimum power limit of committed MGTs is achieved, the PV production is curtailed (or limited)

0

6h

8h

11h

14h

Part 3 Deterministic unit commitment under uncertainty

3.6 Generation Scheduling by considering probabilistic reserve provision

- Optimization method --- Dynamic programming (DP)
- Deterministic generation planning
 - PV self-consumption rate = 50%

PV self-production rate = 25%

□ Obtained effective reserve with a LOLP $\leq 5\%$

17h

Time (half hour)

20h

23h

2h

5h

- Cost variation domain
 - Cost with exact forecasted data
 - Cost in case of upper bound: PV is less, OR is delivered

- Cost in case of lower bound: PV is more, no delivered OR

Part 3 Deterministic unit commitment under uncertainty

3.8 Impact of uncertainty in Dynamic Programming Optimization

Scenarios	Daily Net	Daily PV	Daily Res	Daily Cost (\$)					
	Demand (kWh)	(kWh)	Positive OR (up power margin)	Negative OR (down power margin)	Max. Cost Cost (up margin)		Min. Cost (down margin)		
PV lower bound	1230	279	712	490	236	211	164		
PV predicted	1017	539	763	401	202	179	141		
PV upper bound	833	938	842	336	176	159	128		
						\bigcirc			

Part 3 Deterministic unit commitment under uncertainty

3.9 From Dynamic Programming to Mixed-Integer Linear Programming

□ To reduce the computational time, we simplify models of nonlinear MGTs' characteristics.

Optimization method --- Mixed-integer linear programming (MILP)

5h

6h

11h

14h

17h

Time (half hour)

20ł

23h

2h

I

6h 8h

11h

14h

17h

Time (half hour)

20h

23h

2h

5h

4.5 Obtained effective reserve from slow and fast generators (with a LOLP \leq 5%)

□ Fast generators : response time less than one time step (1-30 minutes).

□ In the second stage, they are used as flexible generators to handle the possible future uncertainty.

Obtained effective reserve in first stage:

Obtained effective reserve in second stage:

More effective reserve is provided by fast generators in second stage

Part 4 Anticipating uncertainty with a scenario-based stochastic optimization

4.6 Day-ahead operational planning results comparison

	Deterministic Optimization							
	Without	Criterion	<i>N-1</i> Criterion					
•	Cost (\$) CO ₂ (kg)		Cost (\$)	CO ₂ (kg)				
Multi-objective (cost & emission)	149	832	213	1174				
Mono-objective (cost)	147	868	211	1221				
Mono-objective (emission)	157	818	220	1164				
Reserve requirement (kWh)	\		\					
Effective reserve	403		554					

Extension to other profiles (days)

Use of the stored energy to supply the load demand later

"Renewable energy time-shift "

Use of the stored energy to provide "clean" power reserve "Clean technology for the power reserve provision"

 \Box Quantify the reduction of the CO₂-equivalent emission and operating costs

The storage control strategy impacts directly the operational plaining of WOTS

□ Implementation of the control strategy : use case, control of the SoC and rated values, ...

Part 5 Participation of storage for operating reserve provision

5.5.1 Results of stochastic optimization under two storage control strategies

Storage control strategy 1: Renewable energy time-shift

Storage control strategy 2: Reserve provision

Under WORST CASE (scenario 6): Reserve requirement and obtained effective reserve with a $LOLP \le 5\%$

Part 5 Participation of storage for operating reserve provision

5.5.2 Results of stochastic optimization under two storage control strategies

38

Storage control strategy 1: Renewables energy time-shift Storage control strategy 2: Reserve provision

Storage control strategy	Reserve energy s	S 1	
	Reserve energy	PV limitation	0
Strategy 1	from PV AGs	Batteries	0
	Reserve energy	151.2	
	Reserve energy	PV limitation	0
Strategy 2	from PV AGs	Batteries	51.1
	Reserve energy	100.2	

Scenario

t

Part 5Participation of storage for operating reserve provision5.6Day-ahead operational planning results comparison

Storage		Scenario-based Stochastic Optimization						
control	Objective	Fuel Cost	CO ₂ Cost	Possibility of risk	Possibility of risk			
strategy		(€)	(kg)	under worst-case (S6)	under S4			
	Multi-objective (cost & emission)	211	1239	\leq 16.7% of time steps	\leq 2.1% of time steps			
No	Mono-objective (cost)	209	1283	\leq 3.6% of daily	$\leq 0.2\%$ of daily			
storage Monc (en	Mono-objective (emission)	215	1213	reserve energy deficit (21.2 kWh / 591.5	reserve energy deficit (0.7 kWh / 411.7			
	· /			kWh)	kWh)			

Part 5 Participation of storage for operating reserve provision5.7 Pareto-optimal fronts for the multi-objective optimization

Part 5 Participation of storage for operating reserve provision5.8 Sizing of storage under uncertainty: *pdf*-based probabilistic analysis

Seasons		Spring		Summer		Autumn		Winter	
Workdays/ non-workdays(w / n)	n	W	n	W	n	W	n	W	
Mean value of renewable energy surplus (kWh)	129	98	113	82	9	9	2	0	
Renewable energy surplus within 40% of probability (kWh)	179	146	158	126	22	26	11	6	
Renewable energy surplus within 80% of probability (kWh)	278	246	250	217	59	83	45	36	

Sizing of battery:

280 kWh of capacity → 350 kWh of storage size (considering a 20% of minimum allowable state of charge)

Conclusion

- □ A scientific method to **build scenarios and anticipate uncertainties**.
- □ Minimization of CO₂ equivalent emissions and operational costs.
- □ Impact analysis of stochastic optimization on operating reserve.
- □ Use of storage as energy flexibility for both power balancing and reserve provision.
- □ Inclusion of storage control strategies into the stochastic optimization.

Perspective

- □ Impact of seasonal factor on generation scheduling.
- □ Investigation on both CAPEX and OPEX of storage.
- □ Sensitivity analysis.

Thank you for your attention!

Publication:

Journals:

WEN Xin, ABBES Dhaker, FRANCOIS Bruno, "Modelling of Photovoltaic Power Uncertainties for Impact Analysis on Generation Scheduling and Cost of an Urban Micro Grid", Mathematics and Computers in Simulation, 04/2020. ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2020.02.023.

Conferences:

WEN Xin, ABBES Dhaker, FRANCOIS Bruno, "Day-Ahead Generation Planning and Power Reserve Allocation with Flexible Storage Strategy", International Conference on Electricity Distribution CIRED 2020, 22-23 September 2020, Berlin, 09/2020.

WEN Xin, ABBES Dhaker, FRANCOIS Bruno, "Impact of Photovoltaic Power Uncertainties on Generation Scheduling and Cost of an Urban Micro Grid", 13th international conference of IMACS TC1 Committee (ELECTRIMACS). 20-23 mai 2019. Salerne, Italie, 05/2019.

YAN Xingyu, WEN Xin, FRANCOIS Bruno, ABBES Dhaker, "Management of distributed operating power reserve in an urban microgrid beyond DSO risk decision", International Conference on Electricity Distribution CIRED 2018, 7-8 June 2018, Lubjana, Slovenia, 06/2018.

MÉTIERS

