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Part 1 Introduction: Context, objectives and methods
1.1 Context : High penetration ratio of renewable energy sources (RESs) in local energy communities -

U Energy and Climate Change

Decarbonization and sustainable development

U Increase energy efficiency
U Reduce power flow transmission losses in a large electrical system

O Cost saving by reducing agents in commercial and operational transactions

U Reduce environmental impact
O Substitution by carbon free generation

Local RES based electrical production for local consumption

U Decarbonization, decentralization and democratization of the electricity generation and management.
U Emerging of Local Energy Communities (related also with islanded networks and microgrids).

U Increasing the participation of RES in the electrical system, introduces uncertainties and problems.
U Local energy balancing
U Reliability and operational power reserve

O Economic costs and CO2 abatement

0 How to integrate RES into operational planning, anticipation and flexibility in energy management
systems?
O Needs for numerical methods that handle RES uncertainty in modelling and optimization.




Part 1 Introduction: Context, objectives and methods

1.2 Context : A local energy community--- An urban microgrid -

U Study case
Distribution
Producer + Consumer = Prosumer

Prosumer with PV AG (20 houses)

Consumer

LC: Local controller Generator (Producer)
MGT: Micro gas turbine

DSO: Distribution system operator
PV AG: Photovoltaic active generator

U Micro Gas Turbines are considered to study impacts of RES on existing generation in electrical systems

O Out of the scope : business plan, socio-economic issues and transaction markets
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1.3 General Organization of Energy Management System (EMS) -

J Organization of a Microgrid supervision in different time scales
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Management

) Focus on day-ahead load and RES predictions, uncertainty analysis, and optimization of the
network operation.
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1.4 Origin and Characteristics of the Uncertainties -
L Solar energy...

Prediction errors in a random sunny day
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1.5 Deal with uncertainty --- Reserve -

U To deal with this variable uncertainty, additional reserve power should be considered (as insurance
to against the sudden loss of generation and / or unexpected increase of the demand).

U How to schedule the reserve power? How to dispatch reserve power on available flexibilities
(generators, ...) ?

Non-dispatchable renewable energy source

Prediction errors in a random sunny day

800

Required additional reserve power

—&— Real 40
— 600 —&— Predicted ]
5 ~ 30
= z
5 —e———— <
A
> 200 - [ Uncertainty caused by ]# £ 10

4 Unc ertamty X forecasting errors
G004 L8485 6h 8h 11h 14h 17h 20h 23h 2h 5h
0 5 10 15 20 25 Time (half hour)
Time (hour)

Reserve allocation on a conventional generator

O First, we consider the reserve is only provided by MGTs already in service (operating below their
rated power), or by offline MGTs with a fast start-up.




Part 1 Introduction: Context, objectives and methods

1.6 Thesis issue -

Day-ahead optimal generation scheduling - o o o o
including the operating reserve (OR) provision |PVAG I
pnder stochastic characteris.tics of photovoltaic (PV) renewable energy : PV Ac tfve Genera tm:
in a local energy community.

l Prosumer |
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Optimal Power forecasting 'l : 1 Lt

generation scheduling & [ Local energy management ]

operating reserve provision
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Objective ———
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I Central energy management I

Minimize the operating costs and
the CO,-equivalent emissions
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1.7 Previous work -

PhD thesis of Hristiyan KANCHEYV (L2EP), Jan 2014
Deterministic optimization of the generation scheduling for an urban microgrid.

Modeling of Non-robust
power system optimization

PhD thesis of Xingyu YAN (L2EP), May 2017
Energy management under uncertainty: Deterministic optimization, uncertainty analysis of past
PV forecast, quantification and allocation of power reserve.

Modeling of N\ Deterministic
power system g
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1.8 Research targets / Scientific methods -

1) Impacts of uncertainty onto objectives (operational costs and carbon emissions)
-> Propagation of uncertainty with persistent assumption

Uncertainty modelling with pdf of past data
Probabilistic-Based Deterministic Optimization

Uncertainty
Modeling of Analysis and Deterministic
Power System Reserve Optimization
Quantification

Uncertainty
Propagation
Analysis

Uncertainty propagation analysis with probabilistic methods

2) Consideration of future uncertainties
->Integration of uncertainty in the solution search
Uncertainty modelling with future probable scenarios
Multi-Objective Stochastic Optimization

. Uncertainty
Modeling of Analysis and

Power System Reserve
Quantification

Multi-objective
Stochastic
Optimization

Uncertainty
Propagation

Scenario-based stochastic optimization approach
o Chance-constrained optimization
0 Robust optimization with uncertainty set

Uncertainty analysis from forecasting

Deterministic unit commitment under uncertainty

Anticipating uncertainty with a scenario-based stochastic optimization

Participation of storage for operating reserve provision

Microgrid Central Energy Management System interface design




Part 2 Uncertainty analysis from forecasting

2.1 Sources of uncertainty : forecasting errors -

To build a database of forecasting errors, we consider artificial neural network (ANN) to:

v" Forecast PV generation power and load demand power;

. . Day-ahead Predicted
v" Obtain the forecasting errors. { Temperature TE, .. TF+2¢

& Cloud cover CE*1,.., CE*2*

6T UVindex UVE*!, . UVE+2*

& Humidity HEL, . HEPZ* ) I
-®-Sensed PV Power

" Time of sunrise/ sunset T T,

Artificial Neural Network y A
Q PV Forecast by the ANN

l PVE*E,. ., PUE*2*

—
—!g
——

]

]

PV Power and Load Forecasting:
ANN application for PV power forecasting _
ANN application for load forecasting

<

Uncertainty modelling: Commcmemmmmmmmmmmmmmmm === ===
Solar generation uncertainty Forecasting errors
Load demand uncertainty

Part 2 Uncertainty analysis from forecasting

2.2 Uncertainty analysis in generation scheduling

Impact of uncertainty onto criteria : economic cost and carbon emissions ?

I"""""""""""""l
5 STEP 1 v
+ Uncertainty characterization ,
"Uncertainty quantification and LEETEE P L T T EETTLEEEE ,
uncertainty modelling with : STEP 2 '
probability distributions of - System mode]ing :
uncertain inputs —p lmmmmmmmeeeeeeaeaea-- - Fosssmmmemmmmmmmmmmoss :
Unit commitment : STEP 3 :
and generation scheduling | ' Uncertainty propagation :
Inputs poziez? Outputs Model output variability and
A DE uncertainty analysis
—

Economic cost and
carbon emissions




Uncertainty analysis from forecasting

Deterministic unit commitment under uncertainty

Anticipating uncertainty with a scenario-based stochastic optimization

Participation of storage for operating reserve provision

Microgrid Central Energy Management System interface design

Part 3 Deterministic unit commitment under uncertainty

3.1 Methodology -

Uncertainty representation:
PV Power and Load Forecasting Errors
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3.2 Reserve quantification from probabilistic analysis of -
forecast errors for each time step

. Frequency distribution histogram

Normal distribution fitting curve
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Part 3 Deterministic unit commitment under uncertainty
3.3 Reserve quantification from probabilistic analysis with forecast errors -

Example Reserve at 11:00 in Vllleneuve d Ascq (L111e France) the 23t of June, 2020:
0.04 F !

<
f=3
oy
|

LOLP (Loss of Load Probability):

+ Calculate Reserve

Probability density
2
[ 3

with € of LOLP Probability that load will exceed the available power generation.
0.01 -
Risk ~
0 | I | | I I | . ~~\~
25 20 10 0 SN
Net demand dev1at10n (kW) Reserve requlrement \v
Risk characteristic regarding reserve at 11:00
60 T T T T T T T T
S 407
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g \
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*EENS (Expected Energy Not Served)

Reserve power is obtained at each time step for tomorrow!
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3.4 Generation Scheduling with deterministic optimization -
4 Optimization framework Power balancing constraint
M net load demand _
Dt Constraints z (t) _ D(/t) =(Load demand forecast — PV production forecast)
r(t) EIReservg l{mits Pm
gg/IGT hl;I:lts . Electrical System m=1 i'
ower Balancing M odeling . power generated by MGT m at time step t
Technological
features Reserve constraint

maximum available power of MGT m at time step t

M
| |Economic Cost '
> pm® = DO + (O

v

reserve power

m=1
'Criteria '
Objective Function Generation limits constraint
Planned references State of the MGT m at time step t
of MGTs 1\
PmOm(t) < pm(t) < pmdm(t)
N

m € M Set of conventional generators
teT Set of time steps.
pm(t) M decision variables

minimum/maximum power generation limits of MGT m

T M
J = min Cm (12 (0)) + Ciusm (2)
2. i

DP: Dynamic programming t=1m=1 (

MILP : Mixed Integer Linear Programming fuel cost of producing p, (t startup/shutdown penalties

Part 3 Deterministic unit commitment under uncertainty
3.5 Studied timing power profiles -

PV power profile Load profile

120 = T T T T
, | U Forecasted daily PV energy is 539 kWh

O Forecasted daily load demand energy is 1082 kWh

O The PV self-consumption rate is about 50% ( —)

U The PV self-production rate is about 25% ( )
+

6h &8h 11h 14h 17h 20 23h 2 5h
Time (half hour)

U Without energy management and optimization during the day, a part of the available PV energy will
not be consumed locally and will be lost (when power supply > Load demand).

-> Hence the PV self-consumption rate and the PV self-production rate will decrease.

U The unused PV power (when the irradiance is high), can be valued by:
- providing reserve power (scheduled PV limitation or PV curtailment), or

- being saved in a storage (charging mode) in order to be used later (through a discharging mode),




Part 3 Deterministic unit commitment under uncertainty
3.7 Generation scheduling by considering N-1 criterion -

O The classical N-1 criterion for the reserve quantification is implemented as following :
1) PV AGs are not seen as reliable generators;

2) Planning of MGTs commitment is calculated without considering PV generation

3) For all committed MGTs, power references are reduced in case of PV production

If the minimum power limit of committed MGTs is achieved, the PV production is curtailed (or limited)

U Deterministic generation planning

100 + I PV AG |

PV self-consumption rate = 17 % = B MGT 1
= I I I I MGT 2
PV self-production rate = 9% S 50 i I "“ II I B MGT 3
£
L AR
o o ) 6h  8h 11h 14h 17n 20h  23h 2h 5h
A significant part of PV generation is curtailed ! Time (half hour)
. . 150 ‘ ‘ !
D Obtalned effectlve reserve [ Effective reserve under N-1 criterion
- I Reserve requirement from the net demand with a 5% LOLP
Z 100
% 50
[a 9
Too much unnecessary effective reserve is provided !
6h  8h 11h 14h 17h 20h 23h 2h 5h
Time (half hour)
Part 3 Deterministic unit commitment under uncertainty
3.6 Generation Scheduling by considering probabilistic reserve provision -
 Optimization method --- Dynamic programming (DP)
. ) ) 120 : : :
U Deterministic generation planning il I PV Pover
100 I l B MGT1 |
. - NG [MGT2
PV self-consumption rate = 50% z SO0 1 II A s I I MGT 3
\g 601 =1 P e
PV self-production rate = 25% Z wl / i
o Inlg ; - |
L N
6h 8h 11h 14h 17h 20h 23h 2h Sh
Time (half hour)

U Obtained effective reserve with a LOLP < 5% 80

T T
[ Effective reserve
I Reserve requirement

Power (kW)

6h 8h 11h 14h 17h 20h 23h 2h 5h
Time (half hour)

U Cost variation domain
- Cost with exact forecasted data

— — Max. Cost($)
Cost($) |
Min. Cost($)

- Cost in case of upper bound:
PV is less, OR is delivered

Max.Min.COST($)
o
|

| | | | | |
6h 8h 11h 14h 17h 20h 23h 2h 5h
Time (half hour)
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3.8 Impact of uncertainty in Dynamic Programming Optimization -
150 99% of CL ]
; i 75% of CL ]
nfidence Level
3 * I 50% of CL Confidence Leve |
| E —— PV power forecast | |
% OO N po— Upper bound
g —-—-Lower bound
£
Z 50+ 1
,z——"‘ o A ‘ ‘ '--\\\
I, 6h 8h 11h 14h 17h 20h 23h 2h S5h 1
Lower bound forecast [ Time (half hour) \ With PV forecast
100 v [ PV Power 120 4 [ PV Power
s w =) =]
MGT 2
5 60 I MGT 3 t%: 80 I MGT 3
5 g oo
E 40 é 40
20 20
0 6h  8h 11h 14h 17h 20h 23h 2h Sh 0 6h 8h 11h 14h 17h 20h 23h 2h 5h
Time (half hour) Time (half hour)
Impact of uncertainty onto cost and reserve variation domain

Scenarios Daily Net Daily PV Daily Reserve (kWh) Daily Cost (S)
Demand (kWh) (kwh) Positive OR Negative OR Max. Cost  Cost Min. Cost

(up power margin) (down power margin) (up margin) A (down margin)
PV lower bound 1230 279 712 490 QG / 211\ 164
PV predicted 1017 539 763 401 202 179 141
PV upper bound 833 938 842 336 176 159 128

Part 3 Deterministic unit commitment under uncertainty

3.9 From Dynamic Programming to Mixed-Integer Linear Programming -

L To reduce the computational time, we simplify models of nonlinear MGTSs’ characteristics.

U Optimization method --- Mixed-integer linear programming (MILP)

T T
I PV Power

I 1
I I
I ‘ ‘ ‘ ‘ < 100
I 4f _ - z I MGT 1
: .- I [ MGT2
. e . : g 50 I MVIGT 3
| g 2¢ - . 7 1 Qo-4
: @) 7 slow generator : 0
| 7 I 6h 8h  1lh  14h  17h 200 23h  2h  5h
1 0 = ‘ ‘ ‘ : I Time (half hour)
| 0 10 20 30 40 50 60
3 T - - - - | 80 T T
! — | [ Effective reserve
| — | —~ 60 I Reserve requirement with 5% of LOLP
I &2 o= — 11 E
g e fast generators | | 5 40
G S _g mGT2 | 1 ! %
: Y —— MGT3 o2
| -~ ‘ ‘ ‘ |
| 0 I 0
| 0 5 10 15 20 25 30 : 6h  8h 11h 14h 17h 200 23h 2h 5h
- Power (kW) ! Time (half hour)
U Comparison of DP and MILP
DP MILP
Objective Function Type Quadratic Linear
Computational Time (s) 4.39 2.53
Optimal operational cost ($) 179 180 ---~=> Acceptable errors




Uncertainty analysis from forecasting

Deterministic unit commitment under uncertainty

Anticipating uncertainty with a scenario-based stochastic optimization

Participation of storage for operating reserve provision

Microgrid Central Energy Management System interface design

Part 4 Anticipating uncertainty with a scenario-based stochastic optimization

4.1 Evolution: From deterministic to stochastic optimization
Probabilistic-M ethod for Risk Based Quantification of the reserve

Probabilistic Uncertainty
Propagation

Analysis

Deterministic
Optimization

Part 3

Quantification
of Reserve

Optimization Stochastic Optimization |

T P T T T
{ | Deterministic I Scenario-based : \
1 1
1 1
1 1

Uncertainty Y
Representation

 steel St

Uncertainty modelling Historical forecasting errors Possible future scenarios
Commitment decision Slow generators Fast generators (flexible)

Fast generators to erase probable uncertainty if necessary
Reserve quantification By considering forecasting errors By anticipating different scenarios

Reserve dispatching MGTs and PV AGs (limitation) Only fast MGTs and PV AGs




Part 4 Anticipating uncertainty with a scenario-based stochastic optimization

4.3 Uncertainty represented by scenarios -

Prediction o
ol [V forecas] |
*x% Forecast = Forecast planning for ONE future % Z :2 First stage
;E_ 40
X % 20
0 6h  8h ];h lé‘th l;h 20h 23h 2h 5h
‘What we know today Time (half hour)

Using the past and the future to handle the uncertainties

Knowledge from the past Consider the possible future

Past  Build probable scenarios ~ Present | iact of scenarios  FUture

Certain of what happened . Uncertain
it has not happened yet

Build probable scenarios
Scenario s, sl s2 S3 s4 S5 s6

Probability r,, | 2.3% @ 13.6%  34.1%  341%  13.6%  23%

34.1%| 34.1%

Foresight 200 - :
sl
o sD - Scenario 1 s 150 - 3 i
T T T T T T 1
! LY 3 = < <
oo e bt e g Scenario 2 {_ Scenario set 5 100 it
For each time step g : . 1 »
=1 Scenario 4 50 Ly 1
3 . . L Second stage
Scenario 3 6h 8h 11h 14h 17h  20h  23h 2h 5h
What we know today Time (half hour)

Part 4 Anticipating uncertainty with a scenario-based stochastic optimization
4.4 Mathematical formulation of scenario-based optimization -

Multi-objective: Operational cost and CO,-equivalent emission cost

4 |
mpu; Z o Z (B (© @cm P ) + et (o (©)] 1 ()16 + el ., (01 + cel

=1m=1 start-up penalties shutdown penalties

Parameters for unit normahzatlon
N et demand constraint,

Reserve constraint,
Generator constraint, and the commitment of slow generators in stage 2 should be same as in stage 1

meM Set of conventional generators (A,p,v)eEF Set of feasible solutions.
teT Set of time steps. @) Commitment of generator m with scenario w at time step 7.
w €W  Set of scenarios. Pm.w (t) The power generation set point of generator m with scenario w at time step ¢ .
T Probability of occurrence of scenario w. ac, ¢, Parameters for normalization

Cm, CE. Operational / Emission cost function
m> Cém P

Results of generation planning under stochastic optimization

ettt -
120 \ : : — L
’ [ PV Power —_ IlOO - - PV Power |-
100 - EMGT1 |
Evar || 2, I MIGT |
80 B MGT 3 = [CIMGT?2

60 -

I MGT 3

Power (kW)

40

201

I "6h 8  I1lh 14 17h 200 23h  2h  5h
6h fn 11h 14h 17h 20h 23h 2h 5h | Tlme (half hour)
i half h T o . .
fime (alfhony : Deterministic optimization

Higher security level by considering uncertainty under different net demand scenarios.

0




Part 4 Anticipating uncertainty with a scenario-based stochastic optimization
4.5 Obtained effective reserve from slow and fast generators (with a LOLP <5%) -

U Fast generators : response time less than one time step (1-30 minutes).

QO In the second stage, they are used as flexible generators to handle the possible future uncertainty.
Obtained effective reserve in first stage:
From slow generators

1
T I I T

: I Reserve power by PV generation

1 I Reserve power by slow generator

1

1

[ Reserve power by fast generators

6h 8h 11h 14h 17h 20h 23h 2h Sh
Time (half hour)
Obtained effective reserve in second stage:

More effective reserve is provided by fast generators in second stage
100 — T T

T T I I T

I Reserve power by PV generation
[ Reserve power by slow generator |
[ Reserve power by fast generators

80 -

60

40

Power (kW)

20

0

6h 8h 11h 14h 17h 20h 23h 2h Sh
Time (half hour)

Part 4 Anticipating uncertainty with a scenario-based stochastic optimization

4.6 Day-ahead operational planning results comparison -
Deterministic Optimization
Without Criterion N-1 Criterion
Cost(§) CO,(kg) Cost ($) CO, (kg)
Multi-objective
149 832 213 1174
(cost & emission)
Mono-objective
147 868 211 1221
(cost)
Mono-objective
157 818 220 1164
(emission)
Reserve requirement \ \
(kWh)
Effective reserve
403 554
(KWh)
O Extension to other profiles (days)
220 1 1200
210\f v Y M Y ~ 1150 \
on
- &
£ 200 : = 1100 r —
= g
S 190 - £ 1050 -
© —%— N-1 criterion é —¥— N-1 criterion
180 | —©— 1ststage 2 M 1000 || —©— 1st stage
2nd stage 2nd stage
170 1 1 1 1 1 - | 950 !

0 5 10 15 20 5 30 0 5 10 15 20 25 30
Self-Production Rate (%) Self-Production Rate (%)




Uncertainty analysis from forecasting

Deterministic unit commitment under uncertainty

Anticipating uncertainty with a scenario-based stochastic optimization

Participation of storage for operating reserve provision

Microgrid Central Energy Management System interface design

Part S Participation of storage for operating reserve provision
5.2 Deal with uncertainties--- Storage -

] Multiple storage applications exist
] The main idea is to save the PV curtailed energy
] The stored energy can then be used for various energy services

0 Two applications are explored
] Use of the stored energy to supply the load demand later
“Renewable energy time-shift
[ Use of the stored energy to provide “clean” power reserve

“Clean technology for the power reserve provision‘

[ Quantify the reduction of the CO,-equivalent emission and operating costs




Part 5 Participation of storage for operating reserve provision
5.3 Storage application benefits

Power, (kw)

A
Storage application 1: no

Renewable energy time-shift by maximizinggo

solar energy self-consumption rate.

60

30

6:00

- Load demand

Power (kw)

A

120

Storage application 2:

Stored PV

PV

12:00 18:00 00:00 5:00  Time (h)

Direct PV energy

-Stoer PV enargy - self—consumption

Clean technology to provide power reserve
90

60

30

Stored PV

2 \ Reserve

00:00 5:00

Time (h)

12:00

Direct PV eners
Reserve requircment - Stored PV energy - &y

self-consumption

18:00

Part 5 Participation of storage for operating reserve provision
5.4.1 Integration of the ESS control strategy in the generation scheduling

PV power and load demand forecasting during t € [1,T]

v

Reserve requirements r(t) with LOLP

] r(t)

D(t). PV (t)

Storage control strategy in the PV active generator

-

1(2) r(t)
r

b

Solve optimization problem by MILP

New variables in constraints

I

Obtain day-ahead optimal
operating cost and emission cost

Y

End Tag (£)
Dag (t)

The total allocated reserve power provided by PV AGs at time step 7.
The power generation of PV AGs at time step ¢.

[ The storage control strategy impacts directly the operational planning of MGTs

] Implementation of the control strategy : use case, control of the SoC and rated values, ...




Part 5 Participation of storage for operating reserve provision
5.4.2 ESS control strategy 1: Renewable energy time-shift -
! Saving the PV power surplus
t=1
e 1

A4 I
Py (920, Pbar (6) = 0, pc (£) = 0, pa (£) = 0.7, (=0, 70 (=0 | :

. _ . step (¢) |
charfmg Y D) <07 N discharging jCharging or discharging at time step ¢ ?
|

|
|
|
|
|
,/\
: SoC(t—1) < = N |
I S0Cimax? f/'z 1 Check the state of charge (SoC)
I Y £ I
I Y ~__ N £ |
| —-D() < Ppa .é % |
I — |2 I
| pc(t) = —D(t) | Pe(t) =Dpgar ] m 1Calculate the charging power
I v ! I
: Ty (t) = =D(t) = Dpqy :Direct PV power surplus for reserve provision
. 2
| |
: | Pas® = PV@Pe®),  ppo(®) = PV(1) = 1(®) (Calculate the power exchanged with PV AG
I 2 \ I

step (d) Tag () = 1y (£)

1 1
Ppac(®) =1 p(8) — 7 pa(t), SoC(t) = o [Epae(t = 1) + T ppqr ()]
at
3 Charge and discharge power limits :

0 <Pcew®) <D, 0 < Paw(t) Py,

Batteries cannot be charged and discharged at the same time:
Pe,w (t) *Pd,w (t) < Or VteT,
State of charge (SoC) of batteries in a certain interval :
S0Cmin < S0C,(t) < S0Chmax,
Losses during charging and discharging :
Ebat,w (x) = Epat )+ Z}-:l 1M Pcw (t) + Z‘g=1 1/p- Pd,w (t)

A 4
Poo (000, Pbar (t) = 0, pe(6) = 0, Pa (8) = 0, 70 (£)=0, 70 (=0 |

step (c)
charfing Y D) <07 N discharging

Z

W‘ﬁ Check the SoC
v
Y 2
N «g
g
| pa(®) =D(®) | | Pa(t) =Py, g Calculate the discharging power
v v

Pag(®) = PV(£)+pa(t), ppu(t) = PV(t) |

2 A4

step (d) Tag(t) = 1y (t)

1 1
Poae(®) =10 (8) = =-pg(t), SoC(t) = ——[Epge(t = 1) + T Ppa (1]
H Cpat
v

At the end of ESS control strategy, we know:

v Allocated reserve power provided by PV AGs 1,4(t)
v Generated power of PV AGs pag4(t)
at each time step !
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5.4.3 ESS control strategy 2 : Reserve provision -
S
! Another control strategy
Fo————————————— = —; ————————————————— | Discharging for power reserve

|| poo(0=0,poar(®) = 0, pe(6) = 0. pa(®) = 0, (=0, Bt (D0, 7 0|

step (c)
charging Y ‘ N discharging
N
Empty batteries

\'e

How much stored energy for reserve provision

C,
Thae(£) = SoC(t — 1) 2

v

N
;
Naot available nower.

-
&
o
=

=
g
=
2
S
2
o
2
e
for load supply 2
z
©
4
5
2
4
°
=
<
]
-1
g
o
«

(t) < Tpae()? &

what is the availability of stored energy to supply the load?

Availablity of the stored energy Y
to supply the load

Y (&) <Tpae =1 (1)? N

pa® =00 | | pu® = nac—r® ||

|
|
|
|
|
|
|
|
|
|
|
|
|
I After reserve provision,
|
|
|
|
|
|
|
|
|
|
|
|
|

step (d) | Tag () = Ty () 17par () |
v

Poae(®) = 1 pe®) =1 pa(®), S0C(®) = = [Enae(t — 1) + T prac(®)]
" bat

Part S Participation of storage for operating reserve provision

5.5 Mathematical formulation of scenario-based optimization with storage -
) Optimization framework Prioritization
Storage control strategy power
profile of AGs
&: I j
Faga(t) ﬂpm(t) we{ir,,’a“rlljzs}
Constraints

> Reserve limits
MGT limits
PV AGs

Power Balancing Electrical System

M odeling Technological
features

———'> 4__ Economic Cost
@ TJ_ Criteria

Planned references Objective Function
of MGTs

uoneziundo a5e)s ISI]
pue uonezifeniuy

Multi-objective: Operational cost and CO,-equivalent emission cost

Q T M l l

mir; Ty {6m,w ) [accm (pm,w (t)) + AceClm (pm,w (t))] + um,a)(t) [ch + ceq] + dm,w () [C#l + Ce#z]}

.......................................................................................................................................................................................
td e

(New variables are added in constraints because of the participation of storage)
Reserve constraint: Ty g ¢y (t) = 14, (£) — 74,0, (£) = total allocated reserve power provided by PV AGs

Net demand constraint: Y _1 P () = L, () — Xa=1Pag,0 () + Tmgew () :
— —» power generation of PV AGs :

N 0
........................................................................................................................................................................................
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5.5.1 Results of stochastic optimization under two storage control strategies -
Storage control strategy 1: Renewable energy time-shift ~ Storage control strategy 2: Reserve provision
150 = T 150 — i

B Y AG I PV AG

I MGT 1 III I MGT 1
o [CTIMGT 2 _ CIMGT 2
% 100" ot 3 Iy 1 & 100 M MGT 3 I““I“' |
= = [
: oo e I
S so0- 1 i I 125 Hn 1 8

i i
oLl L | R
6h 8h 11h 14h 17h 20h 23h 2h 5h 6h 8h 11h 14h 17h 20h 23h 2h Sh
Time (half hour) Time (half hour)

Under WORST CASE (scenario 6): Reserve requirement and obtained effective reserve with a LOLP < 5%
150

150

T T T T
[ Effective reserve under stochastic algorithm

[ Reserve requirement for Scenario 6 [ Reserve requirement for Scenario 6 ‘
- emmmm—— - <100 - e - 7
~ S
L \ i \
| |H h ' Wl
T B0 anl snnsnnnnn |"I.|.|||_.
8h

0 nnnBR0ED
6h 11h 14h 17h 20h 23h 2h Sh 2h Sh
Time (half hour)

T T T T
[ Effective reserve under stochastic algorithm

—_
[=3
[=]

Power (kW)

w
[=)

(=}

6h 8h 11h 14h 20h 23h

More reasonable reserve provision

Higher security level

Part S Participation of storage for operating reserve provision
5.5.2 Results of stochastic optimization under two storage control strategies -

Storage control strategy 1: Renewables energy time-shift Storage control strategy 2: Reserve provision
50

T T T
I Reserve power by MGTs
I Reserve power by PV AG (PV generation) |

T T T
I Reserve power by MGTs
[ Reserve power by PV AG (instant PV) ||
[IReserve power by PV AG (batteries)

|

Power (kW)
Power (kW)

6h 8h 11h 14h 17h 20h 23h 2h Sh 6h 8h 11h 14h 17h

20h 23h 2h Sh
Time (half hour) Time (half hour)
Storage Scenario
control Reserve energy sources(kWh) S1
strategy
Reserveenergy PV limitation 0
Strategy 1 from PV AGs Batteries 0
Reserve energy from MGTs F151.2.
Reserveenergy PV limitation 0
Strategy 2 from PV AGs Batteries 51.1

Reserve energy from MGTs | 100.2

- =
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5.6 Day-ahead operational planning results comparison

Storage Scenario-based Stochastic Optimization
control Objective Fuel Cost CO; Cost Possibility of risk Possibility of risk
strategy ©) (kg) under worst-case (S6) under S4
Multi-objective ) )
o 211 1239 <16.7% of time steps <2.1% of time steps
(cost & emission)
No Mono-objective (cost) 209 1283 <3.6% of daily <0.2% of daily
storage Lo reserve energy deficit reserve energy deficit
Mono-objective
o 215 1213 (21.2kWh/591.5 (0.7kWh/411.7
(emission) @
5 ﬁ kWh) kWh)

Part S Participation of storage for operating reserve provision

5.7 Pareto-optimal fronts for the multi-objective optimization

220 -

210 -

200 -

Cost ($)
3

Pareto-optimal fronts: CO, equivalent emission vs. operational cost

S~

> - P+ Without storage, stage 1
—&— Without storage, stage 2
Strategy 1, stage 1

180 - >I>'D Strategy 1, stage 2
A4 X} v Strategy 2, stage 1
170 - —&— Strategy 2, stage 2
%
160 | | | | | | | |
900 950 1000 1050 1100 1150 1200 1250

Emission (kg)

1300




Uncertainty analysis from forecasting

Deterministic unit commitment under uncertainty

Anticipating uncertainty with a scenario-based stochastic optimization

Participation of storage for operating reserve provision

Microgrid Central Energy Management System interface design

Part 6 Microgird central energy management system interface design
6.1 Four main interfaces in the presented energy management system (EMS) -

Microgrd

Generation scheduling using probabilistic & stochastic strategies
in a MG including PV active generator

Microgrid Management
Data Collection, Uncertainty Analysis, PV Power and Load Forecast

Microgrid Integration of a Prosumer and Micro Gas Turbines (MGTs)

Distribution i R
Grid - - L ‘ nt\ rr ]
Uncertainty analysis | = =% -~E.~;..'§r4-

Prosumer with PV
active Generator (5 houses)

Uncertainty Assessment for OR Quantification
Microgrid

Energy
8 Management
e —

......... - - B— OR Quantification

Day-ahead Optimization Planning

Deterministic algorithm

LC: Local controller
MGT: Micro gas turbine
DSO: Distribution system operator

RED

(.‘_“n-.uue ,'_EL y ‘e

Stochastic algorithm




6.2 Main interfaces and function modules 43

5.8 Sizing of storage under uncertainty: pdf-based probabilistic analysis 44
Non-workday <= Net load profile=p Workday
';“ Let’s take winter and spring as examples... ";’J \\
< Winter =» .

Power (kW)
Power (kW)

<= Spring =P
Seasons Spring | Summer | Autumn | Winter
Workdays/ non-workdays (w / n) nf{wil n w|n wil[n|w
Mean value of renewable energy surplus (kWh) 1291 |98 || 113 &2 9 9 2 10
Renewable energy surplus within 40% of probability (kWh) L1791 1146]] 158 126 | 22 26 [|11] | 6
Renewable energy surplus within 80% of probability (kWh) {278/ /246/] 250 217 ] 59 83 ||45| |36

Sizing of battery:
280 kWh of capacity = 350 kWh of storage size (considering a 20% of minimum allowable state of charge)




Part 7 Conclusion & Perspective
Conclusion & Perspective -

J Conclusion

A scientific method to build scenarios and anticipate uncertainties.

Minimization of CO, equivalent emissions and operational costs.

a

a

O Impact analysis of stochastic optimization on operating reserve.

O Use of storage as energy flexibility for both power balancing and reserve provision.
a

Inclusion of storage control strategies into the stochastic optimization.

U Perspective

O Impact of seasonal factor on generation scheduling.
Q Investigation on both CAPEX and OPEX of storage.

O Sensitivity analysis.

Thank you for your attention!
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