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Résumé 
 

La structure des réseaux électriques a été repensée dans le cadre de l'intégration de nouvelles 

sources d'énergie « vertes et économiques » pour s'adapter à l'évolution des scénarios 

énergétiques. Ces sources d'énergie renouvelables se caractérisent principalement par des 

puissances réduites et sont par conséquent connectées aux réseaux électriques basse tension 

(BT) ou moyenne tension (MT). De plus, la directive européenne du 13 juillet 2009 impose 

d'installer des systèmes de mesure intelligents (encore appelé « Smart Meter (SM) ») afin de 

permettre la participation active des consommateurs au marché de l'électricité. Ces compteurs 

ont été initialement déployés pour permettre la mise en place de tarifs d'électricité dynamiques. 

La mise en place et l'utilisation effective des compteurs intelligents (SM) communicants 

individuels se généralise, aussi bien en France qu'en Belgique. Ce projet de recherche explore 

des approches scientifiques pour la modélisation des réseaux de distribution électrique en 

utilisant des données énergétiques mesurées par les smart meter. L'objectif principal est lié à la 

mise à jour du processus de modélisation du réseau BT et l'évaluation de l'état des câbles BT 

grâce à l'exploitation des données fournies par les dispositifs de comptage intelligent (SM) 

installés à l’échelle locale. Le déploiement à grande échelle des SM permet d'augmenter 

l'observabilité de l'état du réseau électrique. Cette grande base de données est, pour le génie 

électrique, une opportunité de créer de nouvelles techniques/outils de modélisation adaptative 

pour ces réseaux initialement mal surveillés. Les algorithmes conçus permettent d’englober un 

champ d'application varié allant de la modélisation en fonction de la température à l'analyse 

d'impact des variations d'impédance de ligne. Dans ce travail, des outils ont été mis en place en 

appliquant des simulations Monte Carlo (MC) et des techniques d’apprentissage automatique 

sur les données énergétiques mesurées à l'échelle du consommateur final. 

Dans la première partie de ce travail de recherche, le contexte actuel des réseaux de 

distribution électrique BT est introduit. L'organisation générale des réseaux de distribution, les 

principales normes d'exploitation ainsi que le raccordement des nouveaux utilisateurs aux 

réseaux BT sont rappelées. Historiquement, les réseaux BT ont été développés pour fournir de 

l'énergie électrique aux consommateurs. Aucun capteur n'était donc utilisé dans ces réseaux. 

Toutefois, la situation évolue avec l'introduction des compteurs intelligents (SM). Autre 

changement, l'arrivée de générateurs électriques de plus en plus distribués. Dès lors, on assiste 

à l’émergence de nouveaux enjeux pour l'exploitation des réseaux BT. Les décisions de 

planification et de renforcement étaient classiquement décidées par l'étude des scénarios 

critiques. Jusqu'à présent, ces pratiques (approche dite « fit and forget ») permettaient au GRD 

de maintenir la qualité de l'énergie avec une observabilité limitée sur l'état dynamique des 

grandeurs électriques. Avec le raccordement de nouveaux utilisateurs tels que les véhicules 

électriques, la production dispersée, les systèmes de stockage distribués, la capacité limitée et 

les contraintes dynamiques, les réseaux BT évoluent d’infrastructures passives vers des 

infrastructures plus actives avec une nécessité de nouvelle procédure de gestion. Cela a ouvert 

la voie au concept de réseau de distribution intelligent. Concrètement, de nouveaux éléments 

contrôlables peuvent désormais être gérés activement afin que les problèmes de qualité du 

réseau puissent être atténués en temps réel. En outre, les procédures de planification et de 

renforcement doivent désormais tenir compte de ces opportunités de gestion active du réseau 

ainsi que de l'incertitude accrue apportée par les systèmes de distribution modernes. Certains 
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problèmes des réseaux BT proviennent également de leur infrastructures, tels que la dégradation 

induite par les variations de température et une surveillance plus active de l'infrastructure est 

nécessaire afin d'anticiper les pannes qui pourraient empêcher ces systèmes de fournir 

l'électricité provenant d'unités de production dispersées. D'autre part, les réseaux électriques 

sont appelés à répondre dans les prochaines années à de nouveaux défis, qui peuvent se résumer 

par l'arrivée de nouvelles sources de production d'énergie, de nouvelles demandes d'énergie et 

de nouvelles caractéristiques de demande de charge, le tout dans un contexte de changement 

climatique. De plus, jusqu'à présent, les réseaux BT, contrairement aux autres réseaux, 

disposaient de peu de capteurs et étaient donc surveillés sans observabilité car la majorité des 

utilisateurs étaient des consommateurs dont les modèles de dimensionnement de charge étaient 

assez bien estimés. Cependant les nouveaux profils de consommation et de production, encore 

méconnus ou imprécis, rendent ces modèles discutables. Il peut devenir difficile de maintenir 

une qualité de fourniture d’électricité sans surdimensionner certaines parties des réseaux 

électriques. En France, le programme Linky initié depuis 2015 est une opportunité pour le suivi 

et la gestion de ces réseaux, qui n'avaient jusqu'alors aucune observabilité. Les performances 

techniques d'exploitation et de transmission de ces données laissent imaginer des applications 

dans le domaine de la surveillance et de l'évaluation de l'état des câbles BT. Ainsi, un état de 

l'art a été établi pour mettre l'accent sur la digitalisation des systèmes de distribution pour une 

évaluation active et non invasive de son infrastructure physique. 

Dans la deuxième partie de ce travail de recherche, nous explorons donc la possibilité 

d'augmenter l'observabilité du fonctionnement du réseau BT. En exploitant les données 

mesurées, une méthode heuristique permet de trouver une topologie de réseau satisfaisant les 

points de fonctionnement mesurés. Les impédances entre les nœuds sont également identifiées. 

Ensuite, un algorithme probabiliste de calcul de Load Flow (LF) a été développé pour le réseau 

BT radial en considérant la distribution de résistance électrique du réseau comme paramètre 

incertain variant en fonction de la température. La demande de charge et la production PV 

généralement utilisées dans les calculs classiques de Load Flow (LF) sont calculées à l'aide de 

données Smart Meter avec un temps de résolution d'un quart d'heure. Pour tenir compte des 

incertitudes dans le fonctionnement du réseau, la valeur de résistance ou la puissance échangée 

entre le réseau et le client sont sélectionnées de manière aléatoire à chaque itération (pas de 

calcul) en utilisant les méthodes de Monte Carlo (MC). Les évolutions annuelles et saisonnières 

de la résistance de ligne ont été mises en œuvre. A partir de l'analyse statistique de ces 

impédances, l'impact de la température sur le réseau (par extension sur le profil de tension) est 

analysé. Les résultats de simulation ont montré que l'intégration de la distribution de résistance 

dans un outil probabiliste saisonnier peut affecter les indices de fiabilité du réseau jusqu'à 10,4 

% selon la saison. Ce travail fournit un outil utile pour le contrôle de la tension d'un réseau BT 

radial en tenant compte de la variation de la production photovoltaïque (PV) et de l'impact de 

la température sur le réseau. Cependant, ces variations de température et les problèmes de 

surtension qu'ils occasionnent augmentent considérablement le vieillissement du câble. Ce 

processus de vieillissement conduit généralement à la fragilisation, à la fissuration et à la 

défaillance éventuelle des matériaux d'isolation, exposant alors le conducteur et risquant un 

court-circuit potentiel et un courant de fuite. Il faudrait donc s'interroger sur l'impact de la 

dégradation dudit isolement sur l'évolution des paramètres électriques du câble au sein d'un 

réseau électrique basse tension. 
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Dans la troisième partie de ce travail de recherche, les données des smart meter sont utilisées 

pour étudier l'influence de la dégradation du matériau isolant des câbles BT sur les variations 

de tension aux différents nœuds du réseau. Les dégradations d'isolement peuvent créer des 

courants de fuite qui se répartissent dans l'ensemble du réseau électrique et peuvent ainsi 

engendrer de sérieux problèmes sur le bon fonctionnement de ce dernier. Comme la criticité de 

la dégradation du matériau isolant des câbles BT n'est pas connue, des simulations Monte Carlo 

(MC) poussées sont réalisées, afin de caractériser la variable incertaine liée à cette dégradation, 

en définissant et en modélisant différents scénarios d’usure et de fonctionnement. Ensuite, des 

calculs de Load Flow (LF) sont effectués afin d’obtenir les tensions nodales pour chaque 

scénario créé par les simulations MC. La variation de la conductance électrique de l'isolant du 

câble, due à la dégradation du matériau isolant, est aussi analysée. En tenant compte de la 

demande de charge et de la production photovoltaïque dans le réseau ainsi que des données 

d'impédance dans différentes conditions de dégradation, cette étude permet de calculer les 

probabilités de variation du profil de tension au sein du réseau. Les résultats de la simulation 

montrent des chutes de tension importantes en fonction de l'emplacement et du niveau de 

dégradation de l'isolant des câbles ainsi que des conditions de fonctionnement du réseau. Cette 

méthode fournit la répartition des variations de tensions aux différents nœuds du réseau étudié. 

Cependant, dans cette étude, les différents états étudiés pour l'usure de l'isolant ont été générés 

sous forme de valeurs de probabilité car le processus de vieillissement des matériaux d'isolation 

des câbles n'est pas connu en temps réel. D’où l’intérêt de mettre en place un outil automatique 

de classification des dégradations de câbles électriques Basse Tension tant que le degré de 

dégradation n'est pas une variable quantitative auto-actualisable. 

La quatrième partie de ce travail de recherche s'est concentrée sur l'application et la 

comparaison de diverses techniques d'apprentissage automatique pour l'évaluation de l'état d'un 

câble BT ; une caractéristique importante des méthodes d'apprentissage automatique étant leur 

capacité à être adaptable et donc paramétrable avec les données. En effet, comme l'architecture, 

le dimensionnement et les paramètres des réseaux BT sont mal connus, sans modèles 

mathématiques satisfaisants (basés sur la physique), une modélisation basée sur les données 

peut être une alternative avantageuse pour surveiller le bon fonctionnement des réseaux. Pour 

relever ce défi, Il faudra donc tirer parti des données disponibles et à tester les capacités 

d'apprentissage automatique (ML) afin de détecter la dégradation de l'isolant des câbles à un 

stade précoce et indépendamment du type de faute. Un outil est proposé pour organiser et 

analyser les données (variation de demande de charge, variation de production PV, profiles de 

tension) en vue de construire une base de données de « connaissances » sur le fonctionnement 

réseau qui sera ensuite utiliser par les algorithmes d’apprentissage. Le but est de classer l'usure 

de l'isolant des câbles et ainsi de détecter automatiquement les défauts. Ce chapitre ouvre la 

voie à la planification d’opérations de maintenance prédictive efficace du réseau de distribution 

BT en évitant des solutions coûteuses pour les gestionnaires de réseau de distribution (GRD) 

ou pour les clients. Pour explorer les performances des techniques d'apprentissage automatique, 

les résultats sont comparés en fonction de la sévérité des dégradations de ligne. Une analyse 

d'impact du lien de production est également explorée sur les performances obtenues. Enfin, 

des conclusions générales et des recommandations sont tirées. 
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La dernière partie de cette recherche a été consacré à l'utilisation des données de smart meter 

afin d’évaluer l’état des départs BT. L'accent est mis sur le problème de classification de tous 

les câbles BT - au même temps de calcul - dans un réseau BT complet. Ce processus est réalisé 

sur la base d'une identification généralisée des dégradations de câbles dues à l'usure de l'isolant. 

Alors que le chapitre précédent portait sur un problème de classification binaire (deux classes), 

ce chapitre aborde un modèle de classification multi-classes à résoudre. Après avoir présenté 

les réseaux électriques étudiés et le cadre d'analyse des données, différentes techniques de ML 

sont appliquées. La sortie des algorithmes de classification est étendue pour englober autant de 

classes que de câbles existants (ligne entre deux nœuds). Les résultats obtenus ont montré que 

le départ avec uniquement des consommateurs donne la meilleure précision de classification. 

Aussi, plus les points de production PV sont éloignées du premier nœud, plus le profil de tension 

nodale est variable ; de sorte que l'impact du PV peut être clairement analysé. L'approche ci-

dessus montre la valeur ajoutée des techniques de Machine Learning pour l'évaluation de l'état 

des câbles BT ainsi que pour l’analyse des impacts de la pénétration PV sur les câbles BT 

existantes.  

Les outils proposés, dans cette thèse, offrent des perspectives prometteuses pour 

l'identification précoce de l’état des câbles Basse Tension en utilisant des données mesurées par 

les SM combinées à des outils appartenant au domaine de l'intelligence artificielle. Pour les 

réseaux de distribution, les méthodes et outils développés dans cette thèse peuvent aider à 

maintenir, élargir considérablement la capacité d'accueil (augmentation de la demande pour les 

ménages, nouveaux consommateurs, nouvelles sources renouvelables) et permettre la 

planification rentable des opérations de maintenance et de renforcement en identifiant les 

parties les plus faibles du réseau. 
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1. European sustainable policies involve massive connections of sources to the LV network 

At the origin, electrical distribution systems have been designed for a unidirectional power 

flow going from centralized large power plants towards small-scale end-users (Figure 1).  

 

Figure 1: Traditional electrical network with large power plants and unidirectional electricity 

flow [1]. 

Since some decades, the European Union has developed particular incentive policy 

decisions in order to decarbonize the economy and reduce the energy dependence. According 

to the European Environment Agency (EEA) report “Trends and Projections in Europe 2021” 

published in October 2021, the EU has achieved its three 2020 climate and energy targets [2]: 

- 20% reduction of its greenhouse gas emissions by 20% compared to 1990 levels,  

- 20% of the energy consumed from renewable energy sources (RES), and  

- 20% improvement of the energy efficiency.  

One of the highlights of the report was the need to the continued introduction of renewable 

sources for electricity generation in order to make more sustainable the electrical energy sector 

and to achieve the new EU's renewable energy targets. A new 2030 target with a 55% reduction 

in net greenhouse gas emissions has indeed been set; the latter requiring additional efforts and 

new policies (such as the faster decline of the energy consumption) compared with the 

efficiency gains achieved from 2005 to 2020. In France, the targets of the Law « loi d'action et 

de mobilisation » are to reach a 40% reduction of gas emission in 2030 and to increase by 30% 

the renewable energy production while decreasing by 50% the nuclear production in 2025.  

To suit with this changing energy scenario, since 2007, the design of the electricity system 

has been re-thought within the integration of new “green and cost friendly” energy sources. 

These renewable energy sources are mainly characterized by reduced powers and are 

consequently connected in low voltage or medium voltage networks. Thereby, traditional one-

directional systems are migrating towards bidirectional systems with new required sensors, 

information and technology solutions and active management strategies (Figure 2). 

 

Figure 2: Smart grid with bidirectional electricity flow with decentralized electricity 

generations [1]. 
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2. Smart Meters and ICT as new available technologies for developing a smarter grid 

Moreover, the European Directive of July 13th, 2009 requires to install some intelligent 

measurement systems in order to enable the active participation of consumers in the electricity 

supply market. The idea is to enable future business models for a more transactive grid as the 

provision of dynamic pricing for consumers. The implementation and effective use of 

individual communicating Smart Meters (SM) is being generalized, as well in France as in 

Belgium [3]. The goal was that at least 80% of consumers would be equipped with intelligent 

measurement systems by 2020 [4]. As an example, the energy transition law for green growth 

of August 18, 2015 is a transposition of that directive in France [5]. In consequence, the French 

demonstration project Pilot Linky involved the installation of smart meters. In a same way, 

developments in Information and Communication Technologies (ICT) have been constant in 

the capacity and speed of data transmission. The result is a growing interest in creating value 

through a better management and organization of resources. 

 

3. New big data applications 

Smart Meters provide to consumers information about their electricity bills and real 

consumption. They are also sources of temporal and localized information about the electricity 

flow and so can lead to several applications as shown in (Figure 3). 

 

Figure 3: Big data applications in Power distribution systems [6]. 

 

Investment in smart meters is currently mainly justified on the basis of the expected 

reduction of DSO’s operational costs, typically resulting from the cost reduction of meter 

reading, reduction of power theft, remote activation and deactivation of services, faster 

detection of power outages. With new masses of available data, artificial intelligence techniques 

can be applied for analysis and decision-making. Some demonstration projects have been 

experimented and some major ones are listed hereunder. 
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Regarding the European Research and Innovation Program (Horizon 2020 program), the 

InterFlex project has emerged from April 2016 to December 2019. The project brings together 

five European electricity distributors (respectively in Sweden, Netherlands, Czech Republic, 

Germany, France) around improving the reliability and automation of the electrical network [7] 

by using industry-scale demonstrators such as the Nice Smart Valley set up in France. One of 

the project's achievement relied on the remote management of distributed generation by 

deploying control boxes associated to smart meters that can contribute to relieving grid 

constraints. As another project, we can quote Atrias, a Belgian project focused on 

interconnection of all energy players to the network data (either SM data or energy market data). 

In France, the SESAM Grids project, a partnership between ENGIE (multinational electric 

company) and academic laboratories, has investigated the reliability and the security of smart 

grids using meteorological stations and a hundred smart meters deployed on a smart 

demonstrator at the scale of an economic activity zone [8]. Thanks to SM, the individual 

measurements along the LV feeder can provide a lot of new information. The task of this 

research work is to combine these available data with signal processing and data mining 

methods for improving the knowledge of the LV system through the development of new 

Machine-Learning based models.  

 

Why creating an upgraded model of the electrical network cable by using a SM database?  

To supply electricity, the distribution system operator has to supervise their network in real 

time in accordance with standards and try to anticipate their maintenance. As exposed in section 

1, the arrival of generation in low voltage (LV) networks involves new management challenges. 

A wiring model (mathematical or physical) of power lines, whether realistic or hypothetical, 

facilitates the analysis of the electrical network under operation and helps the network 

management and operation setting. In addition, the growing of stakeholders in the electrical 

system (renewable energy based producers, electric vehicles, etc.), the lack of control 

flexibilities over the ageing infrastructures and the increasingly environmental issues are 

forcing grid operators to adapt their practices and strategy for operating their electricity 

networks in order to make it more flexible and intelligent. Finally, with the fourth industrial 

revolution (the numerical one), the energy sector does not stay away from innovation and is 

consequently witnessing an increase in investments and projects in the area. Using Smart Meter 

data to better assess the network cable condition (and over a training period) will provide an 

adaptive approach to the network monitoring and to its maintenance. 

 

In what extent those new models can overcome the existing ones?  

This question is clearly a hot topic because it extrapolates the problematic of using 

conventional models of the electrical network. In fact, impedances vary with the age, 

environmental phenomena and most of the time with the different reinforcement and 

maintenance works performed in the past. Hence, the values of the network impedance are not 

exactly known with accuracy and are, generally, based on the theoretical data originating from 

the initial deployment of the network. Moreover, Low Voltage networks are still facing 

problems with the very poorly known technical characteristics and obsolescence of their 

equipment (e.g. circuit breakers). The impedance matrix resulting from the new models will 

open the possibility of predicting the consequences of ageing and help to decide for equipment 

replacement and investments in electrical networks. 
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What purpose with what kind of extracted information? 

With the location of meters, the topology of an equivalent electrical network can be built 

and the network impedances can be estimated. Hence, this data-driven model can be used to 

analyze the variations of line parameters according electrical operating conditions but also 

physical and environmental conditions as material ageing, degradations, seasonal and climate 

meteorological variations, and so on. For network operators, adaptive impedance based models 

could be used to perform an appropriate fault tolerance control procedure or to better integrate 

the uncertainty in network parameters in their (short to long-term) management process. This 

is an opportunity to have new robust tools that can be integrated into the techno-economic 

analysis of the network while ensuring a permanent monitoring and diagnosis of its wired 

infrastructure without interfering with its operation. 

Information from SM can be also a new opportunity for improving/securing the electrical 

network and the quality of service provided to consumers. The targeted applications (through 

the developed tools) are hoped to significantly improve the reliability, safety and availability of 

LV distribution systems. In a nutshell, the research targets of this PhD Thesis are therefore 

oriented towards : 

- a better analysis of the LV network sensitivity to temperature or PV generation 

variations and to the cable condition degradation, 

- and the development of an early detection of emerging faults thanks to Machine 

Learning techniques. 

The final interest is to be able to guarantee the maximal availability of the electrical grid 

although various changes in the infrastructure by reducing the failure times of the electrical 

network and so maximizing the electrical availability, in a context of the growing demand from 

numerous emerging users and/or decentralized generation.  

 

4. Thesis objective 

Transmission lines are critical infrastructures for the sharing of electricity and have 

motivated earlier the use of specific meters, monitoring instruments and communication 

systems. And so, during many years, research projects have been focused on HV and MV 

transmission lines. This presented research project addresses the upgrading of the Low Voltage 

distribution network structures modelling and cable condition assessment through the 

exploitation of information provided by Smart Metering devices installed at homes. Smart 

meter measurements in the residential sector can drastically enlarge the hosting capacity of 

distribution network (impact of adding new distributed photovoltaic generators (DPVGs) to the 

electrical distribution system) and enable cost-effective planning approaches. Proposed 

contributions aim to set up some cost-effective approaches for LV electrical distribution 

systems through the opportunity offered by the extended installation of those smart metering 

devices. The Smart Meter data can then be seen as an opportunity to create new adaptive 

modelling techniques/tools for those initially poorly metered networks. Potential applications 

are targeting an advanced monitoring and an early diagnosis of LV distribution network 

degradations before a main failure. 
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The main contributions of this research work are: 

- the circuit cell based modelling of an electrical network architecture with SM data, 

- an impact analysis of temperature variations onto voltage variations, 

- the application and comparison of various Machine Learning (ML) techniques for 

condition assessment of LV networks. 

 

Modelling of an electrical network architecture with SM data 

The individual measurements along the LV feeder can provide a lot of new information. 

Those last ones could be combined with signal processing and data mining methods for 

developing new models while trying to overcome the lack of knowledge about the cable 

condition parameters (degradation, seasonal variation appearance) and/or LV network 

operating conditions.  

 

Impact analysis of temperature variations onto voltage variations  

Regarding the climate changes of the last two decades, this contribution brings an original 

and relevant aspect to the management of distribution networks. Indeed, climatic and 

environmental phenomena (such as temperature variation and global warming) bring a lot of 

voltage issues in the LV systems. The extreme temperatures have created some problems of 

unavailability of the electricity production and a drop in the transmission capacity of LV lines 

/ cables. There is then a need of considering some upgraded values (temperature-based 

resistance values) of the network parameters in the existing Load Flow (LF) calculation 

algorithm. This last one will be useful for establishing the impact of the resistance distribution 

on a Probabilistic Load Flow process.  

 

Application and comparison of various Machine Learning (ML) techniques for the 

network condition assessment 

Assessing the LV network cable condition is part of the network management strategy that 

allows to keep the critical variables, such as the voltage level, no matter the network operation 

constraints, in some defined and tolerable margins. To reach this challenge, we need to take 

advantage of the available SM data in order to detect the soft degradation (at early-stage) of the 

cable insulation (regardless of the type of fault). A variety of data analysis techniques can be 

applied to extract a meaningful knowledge from large, noisy databases. Among these 

techniques, an important feature present in Machine Learning methods is the ability to be 

adaptable to the local characteristics that are contained into data. To apply these ML techniques 

and define the input databases, the relationships between the operating conditions of the 

electrical network, its nodal voltages and thickness variation of cable insulation need to be 

highlighted. 

For the Distribution System Operators (DSO), this research is a step towards a higher 

reliability and improving cost-effectiveness of LV distribution networks while assessing the 

grid conditions. The final framework aims to offer promising perspectives for early 

identification of LV cable conditions by using available SM measurements. An important 

aspect of this work should therefore be devoted to evaluate how signal processing, data analysis 
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methods and probabilistic Load Flow computation could contribute to access, even more, to 

predict the current condition of the LV networks. 

 

5. Outline of the manuscript 

The content of the thesis report is organized according to the followed scientific works: 

Chapter 1 presents the context of this research and a state of the art dedicated to the new 

challenges in LV networks. The organization and operation standards of those networks are 

presented as well as the role of smart meter technologies in the management of distributed 

generation. Then, the chapter focuses on new challenges for LV systems, from the problems 

faced (either users or infrastructures / operation problems) to the emerging technologies and 

opportunities brought by smart meter and smart grid concepts. Finally, a state of the art is 

proposed; going from the modelling of cable degradation towards Machine Learning 

applications for monitoring purposes with measured data available in LV networks. 

Chapter 2 presents an analysis of the temperature impact on the characterization and 

modeling of LV cables. A part of a real-life LV network is considered and further is described. 

In that way, a model of the network is presented in healthy cable condition to better characterize 

the line resistance variations by taking into account the temperature and assess its impact on the 

nodal voltages of LV feeders. A Monte Carlo based Probabilistic Load Flow (LF) algorithm for 

radial Low Voltage networks is then implemented to calculate these voltages and is applied to 

different seasonal conditions. 

Chapter 3 investigates the influence of changing network impedances and variable 

operating environment on observed voltage variations. The electrical conductance variation of 

the cable insulation, due to the degradation of the insulating material, is analyzed. Considering 

the load demand and photovoltaic generation in the network as well as impedance data, in 

different degradation conditions, load flow calculations are conducted in order to calculate the 

nodal voltages and to build the network voltage profile. Then, based on a conducted study for 

various degrees of insulation wear and network working points, interesting information are 

revealed about the probability of voltage variation appearance in different nodes of the studied 

network.  

Chapter 4 focuses on the cable condition assessment of a single LV distribution cable. The 

task is to detect a cable degradation with Machine Learning techniques. First, some data 

analysis approaches are presented and compared. A focus on their usefulness application to LV 

systems is performed. Then a comprehensive database is generated and is linking nodal voltages 

variations with different cable degradation conditions and customer Net Demand changes. 

Finally, a Learning-based process is built for identification of a cable degradation based on 

(voltage and Net Demand) data from Smart Meter (SM) measurements. 

Chapter 5 addresses the implementation of a generic Learning-based identification / 

classification framework for an entire LV network. Based on the binary single cable condition 

assessment developed in Chapter 4, the previous work is extended to a complete feeder. 

Multiple Machine Learning algorithms are set up to do a multi class classification of all 

electrical lines and are compared in terms of performance. 

The least chapter is the general conclusion with recommendations of this work. It  concludes 

this research project by presenting a comparative analysis of the performance of the Learning-
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based identification / classification framework for different types of LV networks. Moreover, a 

discussion is provided on the usage, usefulness and current limitations of the developed 

framework. Finally, this chapter proposes some guidelines for Low Voltage distribution 

network operators, focused on the digitalization and reinforcement of LV networks. 
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1.1. Introduction 

The aim of this chapter is first to introduce the current context in LV electrical distribution 

networks. The general organization of electrical systems is recalled and gives basic information 

on distribution networks. Historically, LV networks have been developed for supplying 

electrical energy to consumers. Main features regarding standards for the operation are 

presented as well as the connection of new users in LV networks. No sensors were used in LV 

networks but the situation is changing with the introduction of smart meters (SM). An overview 

of the SM technology is then presented.  

Another change is the arrival of more and more distributed generators. Therefore, new 

challenges for the operation of LV networks arise and the second part of this chapter explains 

the different issues. Planning and reinforcement decisions in distribution were classically 

decided by studying critical scenarios. Until now, these practices (so called “fit and forget” 

approach) enabled DSO to maintain the power quality with a limited observability on the 

dynamic state of electrical quantities. With the recent connection of new users such as electrical 

vehicle infrastructure, dispersed generation, distributed storage systems, the limited capacity 

and dynamic constraints of LV networks require an evolving from a passive towards a more 

active infrastructure and so a management procedure of the latter. This has led the path to what 

is commonly named the concept of smart distribution grid. Concretely, new controllable items 

can now be actively managed so that power quality issues can be mitigated in real-time. Also, 

planning and reinforcement procedures now need to take account for those Active Network 

Management opportunities as well as for the increased uncertainty brought into those modern 

distribution systems.  

Additionally, problems are also coming from the network infrastructure such as degradation 

induced by temperature variations and a more active monitoring of the infrastructure is needed 

in order to anticipate outages that could prevent those active distribution systems from 

providing the electricity coming from widespread dispersed generation units.  

To cover these problems, new technologies, such as smart metering devices, can be 

considered to pave the way for smarter LV networks. 

In the last part of this chapter, a particular attention is paid to the state of the art in the LV 

cable condition assessment. The approaches recently proposed to study the modelling of cable 

degradations are explained. Various measurement data may be used to monitor  the correct 

operation (and their recent applications) of distribution systems and are also exposed. In that 

way, Machine Learning methods that could be adapted for this purpose are listed and reviewed 

at the end of this Chapter. 

 

1.2. Context 

1.2.1. Organization of electrical distribution systems 

The overall structure of a national electrical system is divided into three parts: the High 

Voltage (HV) transmission network, the Medium Voltage distribution Network and the Low 

Voltage (LV) distribution network. The HV network is the link between the large production 

plants, the large industrial sites concentrating a significant portion of electricity demand, the 

interconnections with other countries and the MV distribution network. The MV distribution 

systems (within a 20kV voltage level) ensures the electricity delivery from the transmission 
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network (through different substations) towards the end-users and usually consists of HV (High 

Voltage) / MV-LV (Medium Voltage – Low Voltage) transformer stations, overhead / 

underground lines, protection devices and interconnection equipment. The local consumers are 

connected to the LV systems with a 400V three-phase network or a 230V single-phase network. 

Moreover, the networks are tree-shaped / not looped with short feeders while there are radial in 

Belgium [9], [10] and [11]. Figure 4 shows the synoptic diagram of the deployment and 

operation of passive low voltage networks where the consumer is a fairly passive end 

stakeholder. 

 
Figure 4: Passive LV network [12]. 

The different voltage levels are interfaced by transformers in power stations. The functions 

of these power stations are mainly the voltage transformation, voltage adjustment, distribution 

of energy flows and network protection. Power stations also contribute to the measurement of 

energy flows by metering equipment, tariff change using the centralized 175 Hz remote control, 

safety of the transmission network through the frequency-metric load shedding system and the 

continuity of the power supply by automatic reclosing systems [13]. 

According to the amount of delivered power, the different voltage levels offer, to the systems 

managers, the possibility to reduce voltage drops and losses (from high currents). The general 

architecture in terms of lengths and voltage levels results from a techno-economic optimization 

under sometimes compromises. Indeed, the distribution networks constitute usually the larger 

architecture of the electrical network. In France, over 622 187 km for MV and 701 858 km for 

LV are existing [14].  

A system operator has two missions: the planning and the management of electrical 

networks. Network planning activities must anticipate changes in electricity consumption and 

production, in particular through the development of scenarios. These works help for the 

decision in the investment or capital expenditure (CAPEX) choices of electrical infrastructures. 

(multi year concession in France and Belgium) For an existing electrical network, normative 

prescriptions are essential for the proper operating, and must be strictly satisfied despite the 

arrival of new energy sources or new uses.   
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1.2.2. Standards in LV networks for operation and connection of new users 

The supply of electricity must meet the requirements of standards and guides, which allow 

users to use electricity in complete safety with a good quality. In Europe, the standard EN 50160 

[15] specifies the characteristics of the voltage supplied by public distribution networks within 

standardized operating ranges. In France, the NFC-13-100 [16] standard defines the installation 

rules at the interface between public and private networks; NFC-14-100 [17] defines the rules 

for the installation of public networks; and NFC-15-100 [18] defines the recommendations to 

be observed for domestic electrical installation. All these standards are detailed in guides, 

technical specifications or sheets developed by main stakeholders in the electricity sector [19, 

20]. As consequence and example, the voltage level for a new user connection depends on his 

rated power (Table 1). Voltage and current constraints are the main factors involved in the 

sizing of network infrastructures. 

Table 1: Reference connection voltage in France. 

 Connection in MV (20kV) Connection in LV 

Consumer (Pn) Pn ≤ min (40 MW, 100/d MW) 

d is the distance to the power station [km] 

Pn ≤ 12 kVA in single phase 

(limited to 6 kVA for producers) 

Pn ≤ 250 kVA in three phases Producer (Pn) Pn ≤ 12 MW 

Until 17 MW if allowed 

 

Voltage constraints 

The RMS voltage (averaged over 10 minutes) at the connection point of a LV user must 

remain at all times within a range of ± 10% around the nominal voltage of the LV network 

(standard EN 50160). Before connecting an user, the Distribution System Operator (DSO) 

checks that the voltage variation between the MV / LV transformer and any point of the LV 

network does not exceed preset values according to the voltage at the secondary of the MV / 

LV transformer. A node is said to be under high voltage constraint (or overvoltage) if its voltage 

is greater than 10% above the allowable voltage range; in low voltage constraint  if its voltage 

is less than 10%. 

Current and apparent power constraints 

The current / apparent power constraints are defined to satisfy the rated limits of the 

equipment and ensure a safe height for the aerial lines. The following definitions are used during 

the decision-making studies : 

- A transformer is said to be overloaded when the apparent power fed through the latter 

is greater than its maximum apparent power. 

- A conductor is said to be in congestion when the current passing through it is greater 

than its maximum permissible current for more than 10 minutes. 

To ensure that the current and voltage constraints are met at any times, the DSO usually 

studies pessimistic scenarios of production and consumption in steady state (the so-called “fit 

and forget” approach), namely :  

- maximum consumption and zero production in order to detect risks of constraint of low 

voltage and high current; 
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- minimum consumption and maximum production to detect stress risks of high voltage 

and reverse high current. 

Also, regular maintenance operations based on (passive) historical procedures are carried 

out and are the main sources of operating expenses (OPEX). The energy transition leads to 

rethink these expenses and adaptations of electrical networks, with the emergence of new 

challenges (e.g. integration of high shares of renewable-based generation) and opportunities 

(e.g. towards a better knowledge of the system state through active monitoring) offered by the 

digitalization of the distribution systems. Some details are therefore provided hereafter about 

the technologies allowing this digitalization, namely: smart metering devices. 

 

1.2.3. Overview on the Smart meter technology 

Presentation 

As explained in the general introduction, DSOs are pushed by the EU to install Smart Meters 

(SM). SM are electrical counters built up with an embedded communication device. This 

electronic device is able of recording electrical measurements (such as voltage levels, active 

and reactive powers at the coupling point) and to communicate each day the recorded 

information to a hub (or data concentrator). 

Illustrative SM example : Linky 

As a good example of the current trend towards digitalization of modern distribution 

systems, Linky is a smart meter widely implemented in the French distribution network (fig. 

5). It records the cumulative electricity consumption on various time "indexes" and returns them 

daily to ENEDIS via the electrical network (with a Power Line Communication). Technically, 

Linky measures consumption over 10-minute time slots and stores the corresponding 

information locally, i.e. 144 metering data per day in a memory. The choice of this recording 

frequency is based on considerations related to the volume of information to be stored. In 

Belgium, 15-minute time slots are implemented (to be in accordance with electricity market 

time slots). 

Ten indexes aggregate the consumption over (at most) ten different time ranges; this allows 

ENEDIS to transmit this information to suppliers on a monthly basis for customer invoicing 

purposes. The choice of "only" 10 "supplier" indexes aims to reduce the size of the data storage 

infrastructure at the DSO (15,000 servers at ENEDIS) [21]. Linky is also a suitable tool, within 

certain limits, to take into account different pricing policies depending on the supplier, and in 

particular “dynamic” prices. 

Four "network" indexes are issued from the national TURPE tariff ranges (Public 

Electricity Grid Use Tariff).  

Four "production" indexes, one to measure the energy injected by the consumer and the 

three others used by the DSO to monitor and to manage its network. 

The Linky meter also receives real-time information sent by the DSO, in particular when 

switching between tariff ranges. These changes lead to index changes but can also order 

(control) switches. There are an hardware switch (that may control the water heater or other 

loads such as the electric vehicle) and seven "virtual" switches. Virtual switches are coded 

information (0 or 1) available on specific outputs of the meter, which therefore make it possible, 

via a decoder, to control breakers according to an on / off logic. 
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For the customer, a local bus (‘tele information” ) is provided to know in real time the 

instantaneous RMS value of the current (rounded to the integer value, calculated during a 1 s 

period) and the apparent powers in consummation and in injection [22]. The transmission is an 

asynchronous serial communication according the standard IEC 62056-21 clause 5.1 with a 

transmission speed (baud rate): 6900 +/- 1%.  

                                                           
   (a)                                                             (b)  

Figure 5: Example of popular smart meters: (a) in France ; (b) in Belgium. 
 

Surrounding ICT 

As shown in Figure 6, an advanced metering infrastructure (AMI) comprises smart meters, 

hubs or data concentrators, communication channels and data management systems. 

Hubs collect metering data from a cluster of surrounding electric meters communicating by 

a Power Line Communication (PLC, wired in AM at 50 kHz) and transmit the collected data 

by GPRS (3G or 4G networks) to a head-end server that executes an IS (Information System). 

According to the communication networks and associated infrastructure, it takes several hours 

to get data from all smart meters to the DSO control center. In the reverse direction, it is able 

to transfer back remote operation requests from the information system to the meters. It also 

monitors the voltages of the LV distribution network at the MV/LV power station (because 

hubs are usually located there) and perform the interface with other network devices (eg: Fault 

Detectors). 

 

Figure 6: General scheme of a communication infrastructure for metering data transmission. 
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In the central information system, data coming from the concentrators are received by an 

Advanced Meter Management (AMM). The AMM performs data acquisition and real-time 

processing and stores the measurements of the meters, their current status, information relating 

to the quality of energy, the operational status of the various elements of the system (switches, 

sensors, etc.), knowledge of the equipment having known failures, and various information 

about the services of third parties [23]. The Geographic Information System (GIS) stores and 

processes all types of geographic information via mapping, statistical analysis and database 

technologies. The GIS provides the SCADA with a topological description of the network and 

the geolocation of its various equipment. 

The Supervisory Control and Data Acquisition (SCADA) makes the link between the 

physical quantities of the electrical network and all the communication and information 

functions to make it work. From AMM and GIS data, SCADA processes the information and 

performs network maintenance operations by sending instructions to the various 

communicating elements of the distribution network such as protection devices, network 

equipment or decentralized production. To make decisions, the DSO is helped by a set of 

functions resulting from traditional methods (load flow, protection plan , etc.) and so-called 

Advanced Driving Functions (ADF) methods.  

These new functions are stored in the Distribution Management System (DMS). These ADF 

are achievable through new smart sensors, new processing methods of large amounts of 

information, and new software for real-time or offline applications. These functions enable a 

better knowledge of the network: state estimate (better confidence despite noise, measurements 

missing or inaccurate), load distribution calculations, consumption forecast (predictive models, 

fuzzy logic, neural networks). The network is also more controllable: As example, the Volt Var 

Control (VVC) supports the conventional adjustment means of the voltage by managing 

injections / absorption of powers. 

As shown, the initial and main application of the SM is for billing purposes but as an 

important amount of electricity consumption and injection data are collected, they  are usually 

also used for monitoring and /or for a time analysis of the load demand. The large and non-

synthetic databases coming from SM measurements bring out question about how to further 

exploit and valorise those available information. This is especially interesting for Low Voltage 

distribution networks because until now they do not have effective monitoring devices. In the 

future active LV networks, smart meters can be used for improving energy consumption 

forecasting, tracking power generation as well as improving and making more active the 

diagnosis assessment procedure of the physical infrastructure.  

In conclusion, one can note following findings: 

- The daily communication of measurement data is well adapted for the implementation of 

a dynamic tariff with various energy providers but is not suited for fast applications because of 

significant time delays between smart meters and the information system. 

- The rms value of the voltage is not transmitted by smart meters but can be available at the 

hub location (usually at the MV/LV power station). 

- Consumed and injected energy over 15-minute time slots are available from Belgian smart 

meters while being available on a 10-minute basis in France. 
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- As a significant time delay exists to get measurements from all smart meters, a real time 

monitoring (as AC voltage control…) is not feasible with this technology. But smart meter 

measurements can be used for the monitoring and diagnosis of the state of health of the network. 

 

1.2.4. Distributed generation in existing LV systems 

Analysis of the DG growth with installed capacity 

In recent years, the generation from renewable energy has experienced a significant 

development with a global capacity reaching 2799 GW and 609 GW in Europe at the end of 

2020 [24]. The objective behind the European Green Deal is to become the world first climate-

neutral continent by 2050 (and to cut, by 2030, net emissions by at least 55%). The renewable 

energy counts for 38% of the energy consumed in the EU in 2021 (compare to 19.7 % in 2019) 

[25, 26]. Solar and Wind energy have reached respectively 9% and 15% of Europe electricity 

generation mix. The figure below sums up the annual capacity increase of solar and wind 

generation in European Union through the recent years. 

 

Figure 7: Annual capacity increase of Wind and solar installations in European Union [26]. 

 

Moreover, governments are setting up financial rules to help users wishing to own any 

decentralized production system for personal uses. So, they can inject this electricity into the 

network and selling it to a buyer at a price fixed by the law (feed in tariff) [27, 28]. Hence, since 

the last decade, the distribution networks have welcomed more and more producers based on 

renewable energies (RE) whose installed capacity is between a few kilowatts and about ten 

megawatts. Usually, they are connected to the nearest electrical substation/feeder after applying 

an hosting connection process for checking the future current operation.  

The main sources of RE developed today are (Figure 8): 

- Photovoltaic generation, predominant in terms of number of installations, 

- wind power plants, predominant in terms of installed capacity. 

In addition to renewable energy sources, there are cogeneration system in the network. 

Cogeneration is a technique in which two different forms of energy are produced 
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simultaneously, both electricity and heat, within a single production unit. Some examples are 

the Stirling engine, the micro-generation boiler, the DHW (domestic hot water), etc.  

 
Figure 8 : Energy production in the ENEDIS distribution network [29]. 

Hosting process for new connections 

In conventional LV networks, each local Distribution System Operator (DSO) has the 

major role of applying standards for the safety and the quality of the energy delivered. Before 

a LV connection, the DSO checks that the connection of the new user satisfies the transit 

capacities of LV network structures and voltage ranges at all times allowed on the LV network. 

When the new user is a producer, the DSO also checks the withstand voltage, direction of transit 

and maximum power at the distribution station in worst case conditions [30].  

If no constraint violation is detected, the user can be connected to the network immediately. 

Otherwise, the DSO can solve some overvoltage issues by lowering the voltage plug of the MV 

/ LV transformer (manually and under no supply) or reinforce the part of the network under 

stress (change of transformers, change of lines/cables, new electrical paths), that means modify 

the network impedances. These solutions are relative to the design and sizing of the distribution 

system. They are not suited for a large development of DGs because 

- the plug of the MV / LV transformers can be only operated manually and exclusively 

when the power is off, then the modification of the voltage reference point is 

exceptional, 

- reinforcement studies do not take into account the intermittency of most renewable 

energies connected to distribution networks. 

 

1.3. New challenges for the operation of LV systems and Smart Grid opportunities 

1.3.1. Incoming problems from new users 

New DGs in LV networks introduce new problems because of their geographical dispersion 

and their intermittent nature.  
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The first change is that the connection of small sized Distributed Generation (DG) creates 

new bidirectional flows of the electricity in LV networks when the local produced energy is 

exceeding the consumed one. The protection plan should then be revisited with new settings for 

relays and breakers. Another problem is the possible increase of the voltage beyond the allowed 

limited. Those issues related to voltage control will therefore be discussed later. 

As they are powered by a primary renewable energy, classically, wind and photovoltaic 

production systems do not regulate their output produced power and so, for the distribution 

system operator, are not controllable. Two characteristics have to be managed. Firstly, the 

variability of the power flows requires more dynamical regulation process in distribution 

networks. Secondly, the imperfect production prediction requires reactivity in case of 

unexpected situations onto occurring constraints. 

In addition, new uses, including electric vehicles and heat pumps, will change the 

consumption profiles, these unknown characteristics complicate the planning and management 

for TSOs and DSOs. These uses can indeed create potentially critical consumption peaks for 

networks if too many loads of this type are connected to them simultaneously. In addition, it 

can be noted that new ways of consuming electricity are appearing, with the gradual 

development of collective or individual self-consumption business models, which again modify 

the consumption curves of users without having sufficient visibility on the latter for the time 

being.  

 

1.3.2. Problems from the infrastructure point of view 

The performances of the electrical network infrastructure is evolving in time and so should 

be monitored to prevent localized failures that can lead to possible more generalized failures 

(partial blackouts). Two causes can be identified when talking about physical infrastructure 

degradation: The ageing of materials and the climate change. In general, climate change has an 

impact on the environment conditions of electrical networks, since extreme temperatures (hot 

or cold) are likely to be reached more often [31], and soil characteristics (drying out, for 

example) are also likely to vary [32]. It then becomes necessary to take them into account in 

the management and planning procedure of modern power systems. 

 

1.3.3. Technologies for a smarter LV network 

In this context, the TSOs and DSOs must succeed in finding a compromise between the 

necessary adaptations to these new uses and compliance with existing quality standards in terms 

of supply and distribution of electricity (see part 1.2.2). To this end, new technologies, as the 

monitoring of renewable energy generation, integration of controllable loads and distributed 

storage, … are tested and implemented in order to enable a more precise and real-time control 

of electrical installations. With these hardware actuators, the distribution systems will require 

more intelligence for the network management and may enable a greater optimization of the 

investments made in the networks (also with regard to the carbon footprint). Hence, the passive 

conventional networks are gradually being transformed into a more dynamic, more active and 

more intelligent one. In that way, smart distribution grids (SDG) play both the role of an 

electrical feeder and economic exchange support for the production and the consumption of 

electricity. 
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This PhD thesis falls within this framework that aims to find opportunities offered by 

digitalization  at the service of electricity networks subject to a major energy transition. To that 

end, some possible issues that could be dealt with, namely voltage control and active diagnosis 

assessment of the physical infrastructure, are highlighted hereafter. 

1.3.4. Issues on voltage control 

The increased penetration of distributed energy production resources within the existing 

distribution systems leads to technical challenges related to important voltage variations 

exceeding the imposed standard limits. This situation can lead to damage the consumer’s 

equipment or the network components. Voltage control is becoming then, very critical and 

crucial to manage. Therefore, voltage control is, so far, crucial for the safety of those networks 

as well as for minimizing the electrical losses.  

Dynamic regulation of the voltage 

The quick increasing penetration of intermittent renewable energy resources, such as 

photovoltaic (PV) and wind generation, brings emerging operational challenges to the control 

of the voltage. To analyze this phenomena, let us consider a voltage source (the voltage is set 

at the MV/LV transformer) supplying a customer with a line, which is modelled as a R2, X2 

series circuit. 

  
Figure 9 : Electrical scheme of a voltage source supplying a customer. 

By considering a lagging angle  of the customer current within the applied voltage (V2), the 

following vector diagram can be drawn on Figure 10. 

  
Figure 10 : Vector diagram of the electrical circuit in Figure 9. 

Projections of voltage vectors into an orthogonal frame yields to the following scalar 

equations: 

 

 

 

 

In practice, impedances are small and so does the angle θ : 

𝑉20 cos(𝜃) = 𝑉2 + 𝑅2𝐼2 cos(𝜑) + 𝑋2𝐼2 sin(𝜑)  (1.1) 

𝑉20 sin(𝜃) = −𝑅2𝐼2 sin(𝜑) + 𝑋2𝐼2 cos(𝜑)  (1.2) 
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So the voltage drop can be calculated by :  

 

 

Considering that powers (P2 and Q2) at the customer connection point are known (measured 

or calculated), and under a single-phase network assumption, we establish that the voltage drop 

depends on these powers:  

 

 

Moreover, LV lines have mainly a resistive impedance combined with a limited exchange 

of reactive power, in consequence, we get:  

 

 

Consequently, when a DG unit injects active power at a network node, the voltage at the 

point of coupling is rising (with an impact on the neighbouring node voltages). Distributed 

Generators can then completely modify the network voltage profile among lines, cause over-

voltages in the area close to the DGs (and so not detectable at the HV/MV power station or 

MV/LV transformer) and introduce significant uncertainties in the operating planning of the 

distribution systems. In addition, one of the most significant changes in the network operation 

is the need for a fast voltage regulation (with a required fast time response), which can 

accurately follow the voltage variations associated with the intermittent operation of renewable 

energy based DG. The traditional voltage setting procedures with existing assets are therefore 

not suitable to cope with the massive arrival of DGs. Therefore, a new setting is mandatory to 

ensure a regulated voltage level within the allowed limits. These conclusions are shared in 

several studies of the scientific literature on the impact of decentralized generation in 

distribution networks.  

 

On line monitoring of the voltage 

Moreover, the modeling approaches known until now for LV networks face a critical lack 

of adaptability to the structure of Smart Grids (SGs). During the past years, the LV network 

modeling approaches was based on Load Flow computations using typical load patterns, due to 

the lack of real-time monitoring. Thereby, to ensure a cost-effectiveness planning management,  

worst-case situations for the network control are considered, as representative scenarios, by the 

DSO. The fluctuation of renewable energy sources now increases the volatility and level of 

uncertainty in the operation of smart grids. To ensure the network stability and the detection of 

voltage peaks, the previous modelling approaches need to be updated to probabilistic load flow 

calculations where operational constraints and congestion probability are taken into account. 

Moreover, considering the constant variability of the LV network state caused by residential 

load variations and distributed PV generation, the modelling approaches need to be renewed. 

Thanks to the large deployment of SM, new modeling tools based on multidimensional 

𝑉20 cos(𝜃) ≈  𝑉20 = 𝑉2 + 𝑅2𝐼2 cos(𝜑) + 𝑋2𝐼2 sin(𝜑)  (1.3) 

𝑉20 sin(𝜃) ≈  0 = −𝑅2𝐼2 sin(𝜑) + 𝑋2𝐼2 cos(𝜑)  (1.4) 

∆𝑉 = 𝑉20 − 𝑉2  ≈ 𝑅2𝐼2 cos(𝜑) + 𝑋2𝐼2 sin(𝜑)  (1.5) 

∆𝑉 = 𝑉20 − 𝑉2  ≈ 𝑅2

𝑃2

𝑉2
+ 𝑋2

𝑄2

𝑉2
  

(1.6) 

∆𝑉 ≈ 𝑅2

𝑃2

𝑉2
  

(1.7) 
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approaches are emerging taking into account the impacts of uncontrollable consumption loads 

and intermittent distributed photovoltaic generators (DPVGs) sources.    

 

1.4. State of the art on LV cable condition assessment 

1.4.1. Scope of the literature review 

As already stated, Low Voltage (LV) distribution networks are the last stage of the electrical 

power network, which supplies many dispersed small-scale loads. Those radial networks 

consist of a set of equipment such as MV-LV (Medium Voltage - Low Voltage) transformer 

substations, overhead/underground lines, protection systems, etc. LV feeders are designed to 

feed a limited amount of end-users in order to reduce the influence of a localized interruption. 

In case of fault in a LV network, a few of customers is, indeed, disconnected. Thereby, either 

LV interruption problems or degraded operations of LV equipment (such as the cable ageing 

and deterioration) have received less attention until now. On another hand, due to insulation 

failure (related to ageing and degradation), the insulation material can badly become more 

conductive and less effective for preventing the leakage current between the conductors. 

Moreover, with the increased penetration of DGs, distribution systems become more and more 

active stakeholders of the energy transition and localized interruptions could have an increased 

impact on the global security of supply and on the business activity in the coming years. This 

leads to the necessity of providing a special attention to the diagnosis assessment of the LV 

network physical infrastructure 

Therefore, this section is focused on investigating the literature review related to the LV 

cable condition assessment as well as on the use of smart metering and intelligent techniques 

application for an enhanced management of smart distribution grids. 

 

1.4.2. Modelling of cable degradation 

The French standard NF C 15-100 (harmonized with European standard HD 384) specifies 

that the insulating material of LV electrical cables must oppose to the current all along the 

conductor [33]. In fact, deteriorations of the insulation material can increase the discharge of 

leakage currents in the cable insulation, which can lead to overcurrent and voltage variation 

issues, so it can have adverse impacts on the efficient operation and the safety of the network. 

In addition, LV distribution networks (initially designed for unidirectional power flows) are 

currently subject to bidirectional power flows and frequent voltage variations arise from the 

constant growth of decentralized photovoltaic (PV) installed capacity. The voltage variation 

problems [34-36] tend to accelerate the current leak through the insulation material of LV 

cables. Monitoring the insulation material degradation becomes then a relevant issue.   

Investigations have been carried out for modelling this insulation degradation through its 

resistivity variations. Also, the impacts of physical and electrical phenomena on the insulation 

(such as stress in applied voltage) and on the line resistance have been analyzed. By studying 

the degradation of high-voltage cables having PVC (PolyVinyl Chloride) as the insulating 

material, the author in [37] has shown the impact of environmental conditions (phenomena such 

as temperature and humidity variations) on the ageing of this insulation material. Also, in [38], 

the authors developed a test procedure for electrical cable insulation material. 
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Authors in [39] have evaluated the insulation resistance characteristics of LV cable under 

extreme experiments (such as flame contact, over-current, and accelerated degradation). The 

studies [38] and [39] reveal that the network external operating conditions directly affect the 

insulating properties of the material. According to their obtained results, a 10°C increase in 

temperature seems to be doubly inversely proportional to the insulation resistance value. 

Reference [39] shows that accelerated degradation in the LV cable significantly reduces its 

equivalent life since it reduces the insulation resistance of the cable.  

In the Netherlands, research works [40-42] investigated underground LV cables with a focus 

on jacket damage. Researchers in [40] worked on how water ingress can progressively degrade 

the LV cable. To do this, the experimental study was carried out with two different plastic 

insulated cables (Cross-Linked Poly-Ethylene (XLPE) and PVC) artificially damaged by 

drilling a 8 mm hole into each cable. The cables have been tested in water exposure conditions 

and gradual degradation linked to partial discharges has been observed in the insulating material 

after any water evaporation phenomena. The different experiments showed that at a sufficient 

degree of degradation, breakdown can occur in the PVC cable (due to leakage currents) while 

the XLPE cable was still under operation. Indeed, the PVC by decomposing produces hydrogen 

chloride, which makes the water more conductive. In [41], the same researchers made a 

comparative study on how polymeric insulation materials can affect degradation growing in LV 

Underground Cables. That study pointed out the major role of the insulating material 

decomposition in the cable degradation rate, regarding its chemical composition. From this 

aspect, PVC material has led to a significant degradation unlike PolyUrethane (PU) and XLPE. 

In Hungary, references [43-45] have studied the effects of Distributed Generation (DG) on the 

ageing and degradation of PVC insulation. Firstly, the work was focused on the thermal ageing 

of LV cables. Reference [43], by implementing a periodic thermal ageing test, has shown an 

inverse correlation between hardness and the conductive properties of the cable. In [45], the 

authors have tracked the thermal ageing of the PVC insulation material under various 

temperatures and different plasticizer contents. The results reveal the best PVC specimens for 

the monitoring and characterizing thermal ageing in PVC insulated cables. However, these 

studies only focus on the physicochemical properties of the insulation material of cables.  

 

1.4.3. Monitoring applications with measurement data 

Authors in [46] show the benefits of voltage measurements with smart meter by using 

different literature criteria. In that way, they review smart meter data applications in a context 

of improving the DSOs network operation and planning.  

By investigating the LV system state estimation using smart meters, the study in [47] 

concludes that the knowledge of power consumption and voltage at all nodes is the best 

combination for performing a state estimation. The loss of data in real time is also considered 

by using pseudo-measurement data from the historical database.  

The work in [48] addresses the problem of fault detection in underground electrical cables 

and overhead transmission lines. The work focuses on a 15km – 132 kV / 50Hz HV line (3 km 

in underground and 12 km in overhead) connecting a source to a RLC load. After modelling 

and simulation of the power system (due to the lack of Smart Meter data), the temporal values 

of measured voltages and currents are filtered and digitized to obtain discrete values that are 

used as inputs to an ANN (Artificial Neural Network) algorithm. However, this fault detection 
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technique does not take into account the physical behaviour of the conductors. Talking about 

power cable, the authors in [49] analyse the damage and the life expectancy of electric cables 

in Low Voltage overhead distribution networks. By studying the Stresses-Strains of the non-

isolated driver, they show its incidence on the cable resistivity. That article is useful for 

understanding how the ageing of the cable affects its operation. However, to improve the quality 

of estimations, it is essential to know the network architecture under study and the parameters 

of the lines. This parameter estimation has been the subject of several works including those of 

[50]. They present an approach for the estimation of  line parameters under consideration of 

measurement tolerances with the network state estimation as an end-purpose. As we will do 

later (section 2.3 and 4.2), they start with the modelling of the electric lines with a π-line model. 

Then they add some constant scaling errors to their power flow results to represent the measured 

signal errors (on their ideal values). After studying the parameter sensitivity to the previous 

error, they try to calculate compensation factors by solving a LSQ (Least Squares Optimization) 

minimization problem.  

Based on an opposed approach, the study carried out in [51] has explored the physical 

degradation of the cable through the sensitivity analysis of LV network voltage variation to 

various degrees of cable insulation wear. That work lies in the uncertain nature of the position 

and degree of insulation degradation of the cable. In that context, a Monte Carlo (MC) based 

method was used to characterize the unknown variables. In the literature, the MC technique has 

been widely used in order to analyze the uncertain and unobservable nature of the distribution 

systems. The building of scenarios with a MC technique has proven their effectiveness either 

for the uncertainty impact assessment associated as in [52-53], or for characterizing the Low 

Voltage distribution systems (in a sensitivity analysis context) as in [54]. Moreover, the 

uncertainty impacts associated to the electrical network parameters on the nodal voltages have 

been evaluated in [55, 56]. Furthermore, reference [57] investigated whether and when 

alternative maintenance strategies, using historical data, would be more profitable than the 

currently used corrective maintenance.  

 

1.4.4. Machine Learning application in LV networks 

Recently, Machine Learning (ML) techniques have been studied for fault detection in [58-

65]. The researchers in [58] set up a tool for the transformation of measured data into a model 

of failure prediction (failure classification, MTBF estimates - Mean Time Between Failure) in 

order to meet the requirements for preventive maintenance. The problem is approached from a 

general point of view, starting from the failure prediction at each component of the bus, to the 

overall prediction of the network failure probability using Machine Learning Ranking methods. 

After the implementation and the effectively failure prediction, a classification algorithm is 

developed for a budget-based preventive maintenance planning. The study in [60] addresses the 

benefit of a Machine Learning framework for fault detection and classification in power 

systems. By analyzing the mostly used ML techniques (within consideration of fault types and 

metrics for those techniques evaluation), the authors have shown the benefits of supervised 

classifiers in the reliable solving of power system problems. In the same way, a part of the 

research in [61] was dedicated to the fault diagnosis in LV networks by using a deep learning 

approach. The results of this study allowed the authors to highlight the most influencing 

parameters in the fault assessment process such as the fault resistance. In a context of grid 

monitoring, authors in [63] set up a Power Line Modems (PLM) based solution for the diagnosis 



 

27 
 

of a distribution network cable. By implementing various ML algorithms (combined to several 

pre-processing methods) the proposed approach ensures to employ the best algorithm for a 

given diagnostic procedure. The work has been oriented through a two-stage approach from the 

degradation detection to the ageing and localized degradation assessment of a XLPE insulated 

cable based. The key point of this approach relies to the access to the PLM database. Authors 

in [65] investigated the role of ML in integrity analysis of subsea cables. From the design of a 

Low Frequency (LF) sonar system to the detection of the cable degradation stage through an 

accelerated life cycle testing, their study provides a library of LF sonar responses depending on 

the cable types and conditions.  

Regarding voltage issues in the distribution network, researchers in [66] have worked on a 

centralized voltage control framework within consideration of the uncertainties related to the 

network working conditions and its physical parameters. Those last ones were the dependency 

between the temperature variation and the line resistance, the internal resistance of the 

transformer and the consideration of the shunt admittances of power lines by using a PI line 

model. The author has implemented a fast decision-making method, which is cost-efficient 

since the deep reinforcement learning-based agent can automatically adapt its behavior under 

varying operating conditions. The above ML-based studies give acceptable accuracy results 

with a good speed and a low calculation burden. However, they do not integrate the assessment 

of the insulating material properties of the LV network cables associated to their growing 

insulation degradations.  

 

1.5. Synthesis 

The above literature review can be considered as the foundation of this research project. The 

global objectives have always been to promote the use of SM measurements data at an 

intermediate stage of network management while overcoming the lack of LV systems 

monitoring information. On a first hand, studies about modelling LV line in degraded 

conditions only focused on the physicochemical properties of the insulation material of cables. 

The main difficulty for considering the insulation material electrical properties lies in their 

uncertain nature since the position and degree of the insulation degradation is not well known. 

In this context, one contribution of this research lies in characterizing the uncertain and 

unobservable nature of the distribution systems cable conditions. On another hand, it will be 

interesting to investigate the integration of those ML tools in the LV cable condition 

assessment, using the available network data (no need of extra costly IT devices in the network). 

Hence, the resulting novel contribution will reside in its proposed learning-based framework to 

identify / classify the cable lines that present an insulation degradation, relying on nodal voltage 

and net demand variation profiles of the distribution network. Moreover, the below works do 

not claim to have explored all the aspects related to the LV network cable conditions 

assessment. Its brings out some relevant methodological / theoretical contributions to solve the 

above problems as well as some guidelines for proving the interest of monitoring distribution 

networks and for showing to which network / degree of degradation (qualitative analysis) these 

measurement database will be useful.   
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1.6. Conclusion 

In this chapter, we have seen that electrical networks are called to respond in next years to 

new challenges, which can be summed up by the arrival of new sources of energy production, 

new energy requests and new load demand characteristics, all in a context of climate change. 

These new uses, usually connected in single-phase, have an impact both on network losses, but 

also on compliance with the EN 50160 standard, particularly on voltage limits. Moreover, until 

now, LV networks, unlike other networks, had few sensors and were therefore monitored 

without observability because the majority of users were consumers whose sizing load models 

were fairly well estimated. However, new uses, whose consumption and production profiles are 

still unknown or imprecise, and the development of new self-consumption habits, are making 

these models questionable. It may become difficult to maintain a quality of supply without 

oversizing some parts of the electrical networks, which would increase the CAPEX and OPEX 

of DSOs.  

In a very large number of countries, smart meters (SM) provide large amounts of data. In 

France, in particular, the Linky program initiated since 2015 is an opportunity for the 

monitoring and management of these networks, which until then had no observability. A review 

of SM technologies has been written.  

Technical performances of the operation and transmission of these data let us imagine 

applications in the topic of the monitoring of the LV network and LV cable condition 

assessment. So, a state of the art has been established to emphasize the digitalization of 

distribution systems for an active and non-invasive assessment of its physical infrastructure. In 

the next chapter, a deep analysis is driven on the variation of cable characteristics and on the 

network operating regarding extreme temperature variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

 

 

Chapter 2: Data based analysis of the 

resistance variability distribution in LV 

networks 
 

Contents  

2.1. Introduction 

 

2.2. Presentation of the monitored low-voltage distribution 

network 

 

2.3. Model of the power balancing at each node 

 

2.4. Data based modelling of a LV network 
General method 

Building algorithm for topology recovery of the electrical network 

Identification of the network impedances  

Statistical distribution of the impedances Z during a year 

 

2.5. Temperature based model of resistance distribution  
Motivation of the study 

Problem formulation 

Probabilistic modelling of variables 

Simulation results and reliability analysis 

 

2.6. Conclusion 

 

 



 

30 
 

2.1.Introduction 

As Smart Meter (SM) devices are now largely installed, this chapter explores the 

development of some applications with these available data. The studied LV network is firstly 

presented with a focus on the considered architecture. Because technical characteristics of LV 

networks are usually badly known, a first interest is to use data from SM for modelling the 

electrical network and the next section presents a data-based modelling. It consists in recovering 

the network architecture or proposing an equivalent network structure that satisfies measured 

operating points by SM. By considering impedances between nodes, a model of the architecture 

is deduced. Then, a method is proposed to identify impedances that are considered as unknown 

model parameters. 

The operation and use of the electrical network are involved in the ageing and degradations 

of electrical hardware. Studies (such as references [34] and [55]) showed that some climatic 

impacts (such as heat) modify also significantly the network impedances. With the recurrent 

temperature elevations of the last decade, the electrical networks are facing some increasing 

temperatures, over nominal values, which have been assumed when sizing the electrical 

infrastructures in the past. Assumptions on the temperature, adopted a few decades ago when 

sizing LV electrical networks, do not offer now a sufficient margin of safety with the global 

warming. These worrying phenomena (such as heatwaves) have also led to numerous power 

cuts in California, Australia and Brazil. The temperature impact on the modelling of LV cables 

is addressed in the last part of this chapter as well as the characterization of the resulting 

operation of the LV network in such situations.  

 

2.2.Presentation of the monitored low-voltage distribution network 

In the framework of a pilot project in 2013, the local distribution system operator ORES has 

installed 600 smart meters in Flobecq, in Hainaut (Belgium). The measurements comprise 

energy consumption, energy injection and PV generation values that are recorded and integrated 

over ¼-hourly periods. Data are locally saved and sent, remotely each day, to the DSO 

Information and Telecommunication systems. For testing and developing data based models 

and applications, we have used data from a part of this single-phase LV network [51, 52], where 

each customer is equipped with a Smart Meter (Figure 11).  

 
Figure 11: Topology of the monitored LV distribution network. 

 

This radial topology consists of 18 consumers (Ci), these residential loads are spaced 

according to lengths given in Table 2 (see Appendix A for the complete technical parameters). 
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Table 2: Technical parameter (length) of the above LV distribution network. 

Line between : Length (in m) Line between : Length (in m) 

Node 1 and Node 2 46 Node 10 and Node 11 44 

Node 2 and Node 3 273 Node 11 and Node 12 10 

Node 3 and Node 4 62 Node 12 and Node 13 15 

Node 4 and Node 5 63 Node 13 and Node 14 14 

Node 5 and Node 6 194 Node 14 and Node 15 41 

Node 6 and Node 7 26 Node 5 and Node 16 396 

Node 7 and Node 8 11 Node 16 and Node 17 93 

Node 8 and Node 9 25 Node 17 and Node 18 117 

Node 9 and Node 10 21 Node 7 and Node 19 119 

In this Thesis, data from SM are used to apply machine learning methods and compare 

their performances for developing applications such as monitoring of cable ageing, operation, 

RMS voltage surveillance. With this LV network, different scenario of PV connection at nodes 

will be also anticipated and considered to estimate the impact on the grid operation.  

Working assumptions : 

From the above network some assumptions have been made as followed : 

- The Low Voltage network is considered balanced during the following studies. 

- Due to the short distances (short cable length between nodes; Table 2), the shunt 

admittances (capacitive phenomenon) can be neglected (see section 2.4.3.1). 

- The voltage at node 1 is assumed to be constant and imposed by the substation 

transformer (see section 2.4.3.2).  

- The reactive power is computed by assuming a 0.9 Power Factor value as prescribed in 

standards (see section 2.5.3.2). 

- The cable loses a part of its insulation thickness in case of degradations. Then the cable 

radius R will be reduced (as well as the resistivity coefficient ρ) while the conductor 

radius r will remain constant (see section 3.1). 

- The insulation radius of the cable is assumed to vary between 0.01 mm and 1 mm while 

the nominal insulation radius (from the datasheet) of the studied cable is equal to 1.5 

mm (see section 3.5.1). 

2.3.Model of the power balance at each node 

At each quarter of an hour, the SM simultaneously records power consumption (Cons) or 

power injection (Inj) and PV generation (Prod). Knowing the measurements, the load demand 

(called Load) of the customer at a node q is expressed as in [34] (Figure 12):  

where Cons, Inj and Prod are respectively the recorded positive power consumption, positive 

power injection and positive PV production. 

𝐿𝑜𝑎𝑑(𝑞) = 𝐶𝑜𝑛𝑠(𝑞) − 𝐼𝑛𝑗(𝑞) + 𝑃𝑟𝑜𝑑(𝑞)   
(2.1) 
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Figure 12: Power flow representation at the customer network node. 

 The involved network electrical real power P is the one at customer node is: 

 

The reactive power is computed by assuming a 0.9 Power Factor value as prescribed in 

standards [67]: 

  

These powers can be positive (if consumption > injection) or negative (if consumption < 

injection) and will be used later in the Load Flow calculations. Figure 13 shows the time 

evolution of the exchanged power at node 14.   

 
Figure 13: Exchanged active power at node 14. 

2.4. Data based modeling of a LV network  

2.4.1. General method 

Technical characteristics of LV networks are usually poorly known because most of their 

construction and also evolution (or reinforcement) are performed without any written record. 

In consequence, the known topology can be wrong, or partially/totally unknown. Based on 

Smart Meters data, the task of this part is to present a method to automatically:  

𝑃(𝑞) = 𝐶𝑜𝑛𝑠(𝑞) − 𝐼𝑛𝑗(𝑞)  = 𝐿𝑜𝑎𝑑(𝑞) − 𝑃𝑟𝑜𝑑(𝑞)  (2.2) 

𝑄(𝑞) = 𝑃(𝑞) ∗ tan (cos−1(0.9))  (2.3) 
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- identify the topology  

- estimate the network impedances  

The easiest and more efficient way to recover the topology is to use the knowledge of 

voltage measurements at each node. The basic strategy is that the more similar two bus voltages 

are, the more likely they are directly connected. Unfortunately, this test can consider similar 

voltages on few time steps without being related. So it is very important to consider a large 

number of samples to reduce these cases among all test results. 

In radial networks, each node is fed by only one other node (but can feed several nodes). 

Therefore, when going from the transformer’s node to the end-user’s node (figure 1), a new 

node is connected to one and only one parent node. Hence, the proposed algorithm will start 

with measurement data from the transformer (node 1) and will find other nodes by analysing 

the most similar voltages until the last node (the end-user’s node). 
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Figure 14: Synoptic diagram of the data based model.  

2.4.2. Building Algorithm for topology recovery of the electrical network 

2.4.2.1 Matrix formulation of a topology 

Recovering the topology of a N nodes radial electrical network consists of defining the 

connection matrix T, with values that link a parent node with child nodes of the network, as :  

{

  𝑇𝑖,𝑗 = −1,    𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑗 , 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑙𝑖𝑛𝑒

𝑇𝑖,𝑗 = 0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇𝑖,𝑖 = 1, 𝑛𝑜 𝑙𝑖𝑛𝑘 𝑡𝑜 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑖𝑡𝑠𝑒𝑓

 (2.4) 

i and j are respectively the parent nodes and the child nodes i.e. the current are flowing from 

node i to node j if no generation is connected. i ∈ {1;N-1} and j ∈ {2;N} (figure 1). 
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2.4.2.2 Heuristic algorithm 

Let us consider for two nodes i and j of the network the parameters below: 

-  (Ei,j) their Euclidean distance, 

- (CTi,j) a value assigned to their connection test. 

For a parent node i, the Euclidean distance (Ei,j) between the measured voltage vector and 

the measured voltage at other nodes j is calculated. A set of 96 measured data (96 quarter-hourly 

recordings for one day) is available at each node. For each quarter q, if (Ei,j) is the lowest one 

(which means that (Ei,j) is less than (Ei,1) to (Ei,j-1) and less than (Ei,j+1) to (Ei,N)) then it is 

considered that node i and j have a similar voltage and so are connected. In consequence, the 

connection test (CTi,j) between both nodes is confirmed, and it is incremented by 1. Otherwise, 

it is unconfirmed.  

Table 3 shows the statistical distribution of the parent node to child node relationship value 

(based on the last value of (CTi,j)) for all the network (with data from the network drawn in 

section 2.2). Some connection tests were performed by starting from the transformer node 

(named Parent 1) and by knowing that each child node is supplied with the current from a single 

node (the parent, which precedes it) but can supply several other nodes (which follows it). For 

example (table 3), we see in colon 1 (parent node 1), the unique number 95 at the intersection 

with the second line (child node2). So, 95 Euclidean distances among 96 during the day are 

minimum between node 1 and 2, and, so these nodes will be considered as connected by a line. 

Table 3: Parent node to child node relationship (last value of CTi,j). 

 Parent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Child 
 

                  

1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3  0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4  0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5  0 0 1 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6  0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 

7  0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 

8  0 1 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 

9  0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 

10  0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 

11  0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 

12  0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 

13  0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 

14  0 0 0 0 1 1 0 0 0 0 0 0 95 0 0 0 0 0 

15  0 0 0 1 0 0 0 0 0 0 0 0 0 95 0 0 0 0 

16  0 0 0 2 85 2 1 1 2 2 0 0 0 0 2 0 0 0 

17  1 0 0 1 1 2 0 1 1 0 1 1 1 1 3 91 0 0 

18  0 0 0 1 2 7 2 0 0 2 0 0 0 0 2 1 94 0 

19  0 0 0 0 0 2 79 16 1 0 0 0 0 0 10 1 1 83 
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The topology matrix T obtained from the complete database corresponds to 95% (i.e. 1 error 

over 19 nodes) of the parent-child relationship. The error is observed during the reconstruction 

for node 19; knowing that this last one and the node 8 have both node 7 as parent. These first 

results allow us to confirm that the algorithm works very well for a radial electrical network 

without or with little branching.  

Then, the topology matrix T is filled (following the definition given by equation 2.4) by 

considering an effective connection of a node (child) to a parent node if 95% of the voltage 

tests is obtained. These first results (Table 4) allow us to confirm that the algorithm works well 

for radial electrical network without or with limited branching. 

Table 4: Network topology. 

Children nodes Parents nodes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 

16 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

 

2.4.3. Identification of the network impedances 

Even if the topology is known, it is very rare that impedances of LV distribution networks 

are exactly known because: 

- they are varying with age, temperature, humidity, 

- they have been modified by the different reinforcement and maintenance works. 

Impedance values are strongly uncertain. In this part, an algorithm is proposed to identify 

those impedances with collected Smart Metering data. 
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2.4.3.1.Parametric modelling of the LV network 

A lumped pi-model with cable shunt admittances is currently used for the modelling of lines. 

But, due to the short distances (short cable length between nodes; Table 2), the shunt 

admittances (capacitive phenomenon) from the general PI model can be neglected as 

demonstrated in [55]. Therefore, the line impedance can be considered as a combination of per-

unit-length series resistance 𝑅𝑖 and reactance 𝑋𝑖 as (Figure 15) : 

𝑍𝑖 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 ∗ (𝑅𝑖 + 𝑗𝑋𝑖) (2.5) 

where Zi is the self-impedance of the line i between the parent node i-1 and the child node i. 𝑅𝑖 

in (Ohm/km) 𝑋𝑖 in (Ohm/km) and lengthi (km) represent respectively the line resistance, the 

line reactance and the length of the line.  

Figure 15 shows the series model of the above LV electrical line.   

 

Figure 15: Equivalent series model of a healthy line. 

Following the topology of the considered distribution system, a z-parametric diagram can 

be established by using the previous model of lines (Figure 16). 

 

Figure 16: Parametric diagram of a LV network. 

By relying on the powers and voltages measured by Smart Meters, a data-based optimal 

identification of the electrical network impedances Zi (of a healthy single-phase line) is now 

presented. As lengths between SM are known, impedances are expressed as:  

𝑍𝑏𝑟𝑖
= 𝑍𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖  (2.6) 

where i ∈ {2 ; N}  and N is the total number of nodes in the network.  

The impedance matrix is then obtained: 

𝑍𝑏𝑟 = (

𝑍𝑏𝑟1
⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑍𝑏𝑟𝑁

) ∗ 𝐼 (2.7) 

I is the diagonal identity matrix (N-1 x N-1).  
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2.4.3.2.Objective and cost function 

To find the best estimation of the Zi impedance parameters of this model, an optimization 

algorithm is used so that calculated voltages with the model are matching with measured ones. 

The cost function to be minimized is defined as the RMSE (Root Mean Square Error) error 

between measured node voltages  𝑉𝑛𝑖
 and approximated voltages 𝑉𝑧𝑖

 (with Zi parameters). 

𝑒𝑖 =
√

∑ (𝑉𝑛𝑖
(𝑡) − 𝑉𝑍𝑖

(𝑡))
296∗𝐽𝑜𝑢𝑟

𝑡=1

96 ∗ 𝑗𝑜𝑢𝑟
 

(2.8) 

where jour equal respectively to 1 or 364 depending on daily or annual impedance 

identification. 

As a 15min time step is implemented for measurements, 96 measurements are considered 

for one day (or 96*364=34944 for one year) and for a node i. The task is then to minimize this 

voltage error:  

𝐽𝑖 = 𝑚𝑖𝑛(𝑒𝑖) (2.9) 

The voltage at node 1 (i=1) is assumed to be constant and imposed by the substation 

transformer. By considering all other nodes, the cost function for the studied network is written 

as follows:  

𝐽 = ∑ 𝐽𝑖

𝑁

𝑖=2

 
(2.10) 

Hence, voltages at other nodes can be estimated following the voltage drop expression 

(derived from equation 1.6): 

|𝑉𝑍𝑖+1
| − |𝑉𝑍𝑖

| =
𝑅𝑖+1. 𝑃𝑖+1 +  𝑋𝑖+1. 𝑄𝑖+1

|𝑉𝑍𝑖+1
|

 (2.11) 

We recall that 𝑅𝑖+1 and 𝑋𝑖+1 are  unknown, and are found  through all the time steps. In 

installed SM, the measured voltage ( 𝑉𝑛𝑖
(𝑡)  ) is not communicated to the hub and is not 

available in the information system. Anyway, with power measurements (𝑃𝑖, 𝑄𝑖), these voltages 

are calculated by a power flow algorithm (figure 14).  

As the voltage drops between line sections are different and independent from one to another, 

this optimisation problem is non-linear with as many objectives functions Ji (associated to a 

single-parameter Zi) as truncated lines. Hence, each cost function Ji has its own optimum 

solution Zi. However, the best estimation of the network parameters is the best compromise that 

optimizes the set of all costs. Hence, a bi optimization is developed. Firstly, (N-1) mono 

objective optimizations are implemented individually by finding the best impedance values for 

each objective functions 𝐽𝑖 (equ. 2.9). Then, knowing the (N-1) minimum that can be achieved, 

a multi objective optimization (equ. 2.10) is implemented with these goals and by considering 

a global objective function, which is based on a weighted sum of all 𝐽𝑖.  

Step 1 : Mono objective minimization with fminunc solver 

As a first resolution tool, we used the "fminunc" tool from Matlab as a non-linear 

optimization algorithm. In fact, that solver is regularly used (combined or/not to another 

algorithm) for multidimensional objective function using Quasi-Newton Methods and quadratic 
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interpolation. For finding the local optimum, we write a function to evaluate each objective 

function 𝐽𝑖 at an iteration k (k ∈ {1; i}). Without doing that (which means solving directly 𝐽𝑖, 

the solver tries only to adequately minimise the first objective function. 

Step 2: Multi objective minimization with fgoalattain solver 

In this second step, found impedances are reset. Previous found minimized cost function 

values are then used as weights to rewrite the unique cost function (equation (2.12) but based 

on equation (2.10) syntax) and the Matlab goal attainment solver is used. 

𝐽 = ∑(New_𝐽𝑖

𝑁

𝑖=2

− 𝐽𝑖  (found at S𝑡𝑒𝑝1) (2.12) 

 

2.4.3.3.Results with a 4 node network 

To illustrate how the optimization algorithm works, a simplified four nodes single-phase 

network is used (Figure 17). 

 

Figure 17: Topology of the simplified four nodes network. 

Figure 18 shows daily profiles of the active power values measured for customers at nodes 

2, 3 and 4. 

 

Figure 18: Profiles of the active powers measured in c1, c2 and c3. 
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Two study cases are considered. In case 1, we consider that lengths of lines are unknown so 

decision variables are the matrix Z with impedances in ohms of the electrical network (table 5). 

In case 2, we assume that lengths are known, they can be estimated by measuring the 

communication speeds between smart meters. 

Table 5: Simulation cases specification. 

Case 1 : Unknown length of cables 

Decision variables :  

impedances of the network 

𝑍 = [

𝑍𝑙1 0 0
0 𝑍𝑙2 0
0 0 𝑍𝑙3

] 

True values of impedances: 

𝑍𝑙1 = 0.046 ∗ (0.21 + 0.31𝑖) = 0.00966 + 0.01426𝑖 

𝑍𝑙2 = 0.273 ∗ (0.32 + 0.24𝑖) = 0.08736 + 0.06552𝑖 

𝑍𝑙3 = 0.062 ∗ (0.32 + 0.24𝑖) = 0.01984 + 0.01488𝑖 

        (km)            (ohms/km)                          (ohms) 

Case 2 : Known length of cables 

Decision variables :  

impedances of cables 

𝑍 = [

𝑍1 0 0
0 𝑍2 0
0 0 𝑍3

] ∗ (
0,046
0,273
0,062

) 

True values of impedances (per unit length): 

𝑍1 = 0.21 + 0.31𝑖 

𝑍2 = 0.32 + 0.24𝑖 

𝑍3 = 0.32 + 0.24𝑖 

(Ohms/km) 

1st Test : Ideal measured voltages are considered  

In this test, the calculated voltages (with a power flow), are considered exactly equal to the 

nodal voltage that could be measured during the monitoring. The results obtained after 

simulations are shown in Figure 19, for the two cases defined above and different numbers of 

iterations (where J1, J2 and J3 are respectively the cost function for line 1 to 3).  

Case 1 Case 2 

   

 Z1 = 0.0096 + 0.012i              Z1 = 0.2061 + 0.3088i 

Z2 = 0.0871 + 0.059i             Z2 = 0.3200 + 0.2478i 

Z3 = 0.0198 + 0.018i  Z3 = 0.3199 + 0.2075i 

Figure 19: Cost function convergence and estimated impedances: (Case 1) impedances in 

ohms ; (Case 2) impedances in ohms/km. 
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After 6 iterations, errors at all nodes (functions J1, J2 and J3) are significantly reduced. 

Figure 20 shows the boxplot of the voltage errors at the ending node through iterations. 

 

Figure 20: Boxplot of voltage error between measured and estimated impedance (node 4). 

Even if the combination of solvers allows the perfect optimization of all cost functions, it is 

an optional point to do a goal attainment after the “fminunc” minimization (case 1). We see that 

by taking into account the fact that the line length is known (Case 2) the voltage error is 

significantly reduced. 

2nd Test : Measured voltages with noises  

In practice, smart meters have a standard measurement error of 2% for the voltage and 3% 

for the powers. To assess the impact or measurement errors, a measurement noise is added to 

the measured voltages (vni) except at the power station node. A random Gaussian signal is 

parametrized with a mean equal to 1 and a standard deviation of 2% [68] (Figure 21). 

 

(a) 
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(b) 

Figure 21: Voltages profiles : (a) Added noise ; (b) Noisy measurement of the voltage. 

By assuming that the line lengths are known (case 2), the challenge now will be to evaluate 

the ability of the algorithm to deal with noisy data in order to continue to converge to a best 

estimation of impedances. The obtained estimated impedance values with respected errors and 

relative errors are :  

Z1 = 0.26 + 0.341i, Z1 = 0.051 - 0.031i,  Z1 / Z1 = 24% - 0.1%i 

Z 2 = 0.44 + 0.28i, Z2 = 0.122 + 0.041i, Z2 / Z2 = 38% - 17%i 

Z 3 = 0.43 + 0.24i, Z3 = 0.112 - 0.13i, , Z3 / Z3 = 35% - 54%i 

The figure below shows the boxplot of the voltage errors over the measurement time and 

through some iterations (at the last node of the network) : 

 

Figure 22: Boxplot of the voltage magnitude error for noisy data. 

As we can see in Figure 22, the random noise affects the distribution of the voltage error 

with a variation from 3% to 41% between the noisy calculated voltage (VZi) and the perfect 

measured one.  
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An interrogation can be emitted on the fact that the new impedances are those close to the 

parameters of the network during the measurements: assumption to validate by adding in the 

grid definition, the voltage at the substation. 

 

2.4.4. Statistical distribution of the impedances Z during one year 

In this part, the impedance of the impedance matrix is re-estimated every day during one 

year and the noisy measured voltages are considered. A collection of different values are 

obtained and can be represented has a distribution. As example, the Figure 23 represents the 

distribution of R1 and X1 for 20 days during the year 2013. 

 

(a)                                                                        (b) 

Figure 23: Distribution of the resistance (a) and the reactance (b). 

The average values and standard deviations can be calculated for each line. The table below 

presents the estimation results of the line Z2 over a cumulative period of 20 days for a single-

phase network: 

Table 6: Daily variations of the averaged impedance (Ri + Xi) values in mOhm 

Day R1 X1 Day R1 X1 

1 0.280 0.317 11 0.228 0.322 

2 0.244 0.386 12 0.261 0.379 

3 0.239 0.322 13 0.231 0.353 

4 0.282 0.360 14 0.253 0.386 

5 0.238 0.353 15 0.259 0.325 

6 0.257 0.257 16 0.238 0.345 

7 0.266 0.370 17 0.249 0.350 

8 0.269 0.394 18 0.243 0.394 

9 0.240 0.353 19 0.278 0.436 

10 0.269 0.383 20 0.276 0.293 
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For the resistance and the reactance values, we can see that the variations of R1 or X1 is 

respectively around ±25% and ±100% of their typical values during the year. 

That observation will be helpful for the study of the environmental impacts over the lines. 

The assumptions made about the LV network structure allows us to learn its impedance. Using 

the goal attainment solver, we were able to first validate the solution resulting from the first 

solver and also to weight our cost function, which can be very helpful when working with an 

unbalanced network. Regarding voltage drops over the measured samples, we can assume that 

the LV grid monitored is healthy. 

However, using the noisy voltage as measured voltage highlighted the impact of the 

substation voltage in the optimization result. So, sensor at the substation is an important step 

for the best monitoring of an electric grid (even if the sensor is imperfect: error, communication 

time delay (which varies according to the distance with the collection point), partial sensitivity 

to noise). The impact of the voltage angle is neglected because the lines have short lengths. 

 

2.5.Temperature based model of the resistance distribution 

 With climate change, we are witnessing an increased the warming. The main goal of this 
study is to investigate the dependency of voltages and power flows in lines with the 
temperature/weather. The obtained resistance distributions enable the implementation of a 
probabilistic Load Flow (LF) calculation and so to estimate voltages and power flows according 
to temperature variations. 
 

2.5.1. Motivation of the study 

The passage of a current in overhead power lines causes a warming due to Joule effect losses. 

A higher ambient temperature limits the cooling of overhead lines by convection and radiation. 

Thus, in a hot weather, the temperature within the power line itself increases. In order to avoid 

reaching too high temperatures, which would damage conductors and insulators, the maximum 

current that the line can carry must be reduced. For the transport of electricity under high 

voltage, an automatic procedure is implemented and is called Dynamic Line rating. For low 

voltage lines, to our knowledge, there is no procedure and the values of the maximum currents 

of the protections cannot be modified remotely. In case of a permanent warming, the ground 

will also heat up, which will induce also the heating of underground cables, a power derating 

may be scheduled. Temperature also has a comparable effect on substations: the maximum 

capacity of power substations and transformers is reduced by around 0.7% per additional degree 

over the standard value [69].   

In order to follow the evolution of the climate, the ONERC (National Observatory on the 

effects of global warming) considers as an indicator the difference in temperatures compared 

to the average over the reference period 1961-1990. The warming of the global average 

temperature is very clear: strongly negative difference until 1940, then most often negative 

difference until around 1980, then a net warming. The temperature difference has been almost 

systematically positive since the beginning of the 1980s (Figure 24). 
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Figure 24: Historic temperature variation in the world from 1850 to 2019 [70]. 

 

With this tendency, the evolution of annual average temperatures in Europe shows a clear 

warming since 1900 as measured in France (Figure 25). 

 

Figure 25: Historic yearly temperature variation in France [70]. 

 

For the future, the various considered scenarios by the GIEC are clearly also considering a 

significant temperature increase whatever the decided actions (Figure 26). 
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Figure 26: Projection of average temperature variation according to different scenarios [71]. 

For the operation of the electrical network, the instantaneous value of the temperature is 

more relevant and the increase of extreme temperature are critical (Figure 27).  

The sizing of the electrical infrastructures was calculated with temperature assumptions, 

which seemed to represent a sufficient safety margin at the time. Now, with global warming 

this margin is drastically reduced. As example: to avoid power cuts and fire outbreaks, a 

minimum safety height is needed between a power line and the obstacles below because the 

conductors lengthen and get closer to the ground depending on the heat. For the MV network, 

the safety height must be guaranteed up to an outside temperature of 40°C. This is a threshold 

that was exceeded in many places during the heat waves of June and July 2019 (See Appendix 

B for July 2022 temperatures). If the network is exposed to maximum temperatures higher than 

those for which it was designed, it may not be able to carry all the electricity. If this is the case, 

load shedding may become unavoidable even if the available generation capacities theoretically 

meet demand.  

 
Figure 27: Measured maximal temperatures between 21th and 27 th July, 2019 [72]. 
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Low voltage infrastructures are mainly in overhead. Underground low and medium voltage 

lines are a solution, while noting that during heatwaves, the ground will also heat up, which 

will increase the heating of underground lines. Moreover, underground cables have economic 

limits because they are more expensive than an overhead line. 

In this part, the proposed data based model is enhanced to study the effect of the temperature 

onto the operation of LV networks. The variation of the impedance along the year is modelled 

and then a probabilistic load flow is developed to quantify the impact onto the voltage 

variations. To do so, the line resistance distribution is considered as an uncertainty source that 

needs to be characterised.  

A probabilistic LF is implemented in order to estimate voltages and improve the identified 

impedance values. References [73], [74] and [75] investigated the LV management issue by 

developing a probabilistic tool for Power Flow calculation considering the fluctuations of PV 

productions and load demands as an uncertainty regarding the probabilistic evaluation. While 

the work in [74] used directly smart meter data to establish the PV production profile, the work 

in [73] based its uncertainty study on a forecasting method by using meteorological data from 

numerical weather models. Unlike the works of [76] and [55], which defined a confidence 

interval around the line resistance nominal value, annual and seasonal resistance variation 

profiles has been defined on the basis of temperature data for this work.  

A complete process is developed, for some specific case studies. The objective is to show, 

to what extent the use of such an upgraded tool can demonstrate the actual impact of the 

resistance distribution on a Probabilistic Load Flow computation. 

 

2.5.2. Problem Formulation 

2.5.2.1.Thermal modelling of a line resistance 

By taking into account the temperature variation over one year, a resistance distribution 

model is built. The inductance is kept fixed because magnetic effects of the lines can, indeed, 

be considered as independent from the external temperature. The line resistance is expressed 

with the temperature and the electrical conductor resistivity as: 

 

 

 

 

 

 

where l is the length of the line; the parameter ΔT (with ΔT = Tt - To) is the temperature variation 

between the external temperature Tt and the steady state temperature To.  

     The other parameters in equation (2.15) and their value (used in the remaining of chapter 2) 

are defined in Table 7.  

𝑅 (𝑂ℎ𝑚𝑠) =  𝜌 ∗
𝑙

𝑆
 (2.13) 

 

 
 

 

𝑅 (𝑂ℎ𝑚𝑠/𝑚) =  𝜌 ∗
1

𝑆
 

(2.14) 

 

𝑅𝑡 (𝑂ℎ𝑚𝑠/𝑘𝑚) =  [𝜌𝑜 ∗ (1 + 𝛼𝑜 ∗ ∆𝑇)] ∗
1

𝑆 ∗ 103
 

(2.15) 
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Table 7 : Specifications of the line. 
Line conductor parameters 

Parameter Value and unit 

To : Steady state temperature 20 °C 

𝛼𝑜 : temperature coefficient at 20°C 4x10-3 K-1 

S : conductor section 50 mm2 

𝜌𝑜 : Resistivity at 20°C 17,2x10-9 Ohms.m 

 

2.5.2.2.Impact of the temperature onto impedances and the network operating  

As the external temperature during the year is varying, the line resistance will change also.  

So a large set of resistance values is obtained. The seasonal or annual average value of the line 

resistance can be considered.  

 

Table 8: Deterministic values for the fixed resistance value in mOhms/km. 

CASE 1 : ANNUAL STUDY CASE 2 : SEASONAL STUDY 

0.333 Winter : 0.322 

Spring : 0.336 

Summer : 0.337 

Fall : 0.337 
 

The average value of the resistance distribution in a month can be calculated as well as the 

average value over the year, but these deterministic data do not model the power variability and 

the uncertainty of powers. 

 

By considering the resistance as a random variable, the probability and so the cumulative 

distribution function (CDF) can be calculated over one year horizon (Figure 28). 

 

Figure 28: Annual CDF of the line resistance. 
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Figure 29 shows the CDF (see Appendix C for CDF construction process) of the same line 

resistance for each season. The CDF profile for the resistance is logically explained by the 

temperature distribution with higher values during the warmest months. 

 

Figure 29: Seasonal CDF of the line resistance. 

 

2.5.3. Probabilistic modelling of variables 

 Randomly introducing the line resistance distribution in the probabilistic tool is important to 
show how and when (regarding the season and the time of the day) the effect of the temperature 
variation influences the power flows and RMS voltages in the electrical network. By computing 
the voltage magnitude at each node with a power load flow calculation, it is also possible to 
evaluate the critical nodes (in terms of voltage magnitude constraint) by using a probabilistic 
criterion that considers an acceptable variation range of ±10% around the nominal magnitude 
[77]. 

 Table 9: Chosen voltage characteristics. 

EN50160 standard for Power Quality 

Tolerable overvoltage percentage ≤ + 10% of Vo 

Tolerable voltage dip percentage ≥ - 10% of Vo 

 

where Vo is equal to 230V.  

Two cases have been considered to explore the impact of the thermal variations of the line 

resistance. The first case considers one unique typical daily profile of load demand and PV 

production for each quarter of an hour (q) over the whole year and will enable us to evaluate if 

the resistance variation can generally impact or not the voltage variation. The second studied 
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case will go deeper in the analysis by evaluating the voltage variation for the hottest and the 

coldest season and so is considering a daily profile related to the each season in the year (table 

10).  

Table 10: Simulation cases. 

CASE 1 : ANNUAL PROFILE CASE 2 : SEASONAL PROFILE 

96 Load and PV production profiles for 

each customer corresponding to the 96 

quarters of one hour ranging from q1 to 

q96 

96 Load and PV production profiles for each customer 

corresponding to the 96 quarters of one hour and per 

season, ranging from q11-q14 to q961-q964 (index 1 for 

Winter, 2 for Spring, 3 for Summer, 4 for Fall). 

 

2.5.3.1.Probabilistic modelling of the load demand and PV production 

As the database of available data from smart meters is limited, it is interesting to use also 

data from a probabilistic model of these powers. In a previous research work [78], power data 

have been analysed and, as example, Figure 30 shows recorded data of the energy consumption 

at a node in April. 

 

Figure 30: Graphical Representation of the Typical Day Profile of energy consumption at the 

point of common coupling of one PV user, in April [78]. 

For each 15 min time step, the load demand and PV production can be considered as random 

variables. Hence, two Cumulative Distribution Functions (CDFs) of Probability, one for the 

load demand, one for the PV production can be computed for each 15 min time step q and for 

each customer. By sampling these characteristics, many daily power profiles can be built 

through this Monte Carlo process and then used to confirm (or not) tendencies of the studies 

impacts over a large amount of considered profiles. 

To consider powers as time depending data [79], 96 Cumulative Distribution Functions for 

each one of the 96 quarters of a day are modelled and used for the sampling of the customer 

load demand (Loadq,i for each customer i at each quarter q). The produced PV power (called 

Prodq,i) is built in a same way. The exchanged customer to network power is calculated by 

using equation (2.2). As example, the CDF for Load and PV production, for customer 14 (of 
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the network shown in Figure 11) at two different quarters of an hour, are shown in Figure 31. 

It can logically be observed that more important PV generation values are observed at midday. 

 

Figure 31: CDF for the PV production and the Load for some quarters of an hour. 

In a same way, by considering the resistance value as a random value (see part 2.6.2.2), an 

annual or seasonal CDF is obtained. Then, for each studied cases, sampled values of the line 

resistance can be randomly generated.  

 

 

2.5.3.2.Implementation of a Probabilistic Load Flow and developed algorithms 

The issue of this research study is to calculate possible overvoltages and undervoltages in 

the studied LV network according to the temperature variations and so resistance variations of 

line cables. A classical probabilistic Load Flow calculation has been derived to estimate all 

node voltages. 

Figure 32 shows the flowchart of the developed and implemented tool (in MATLAB®) of 

the probabilistic Load Flow with either fixed or sampled resistance values. This algorithm is 

linked to an upgraded version of the work done in [80] and also by considering the deterministic 

or probabilistic modelling of the line resistance.  

Monte Carlo (MC) simulations are used to build different daily power profiles over the year 

by randomly sampling the 96 CDF in a day (part 2.6.3.1). Each quarter is indexed by the 

variable q. One profile (or scenario) is indexed by the iterative variable it, and a large number 

Nit of profiles are generated (Figure 32). The reactive power value is generated with a 0.9 Power 

Factor: Qq,it = Pq,it*tan(cos-1(0.9)). According to the study case (table 10), CDF are selected. 
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Figure 32: Random power exchange calculation at each quarter of an hour for one customer. 

Resistance values will be also generated by another MC method using the annual or seasonal 

CDF profiles that have been modeled in part 2.6.1 (Figure 33).  

 

Figure 33 : Flowchart of the resistance probabilistic modelling. 

Figure 34 shows the flowchart of the developed and implemented tool (in MATLAB®) of 

the probabilistic Load Flow with either fixed or sampled resistance values (for the case 1 : 

annual study algorithm). This algorithm is linked to an upgraded version of the work done in 

[80] by considering the deterministic or probabilistic modelling of the line resistance.  

At each iteration it (it ϵ 1…Nit), the line resistance value is fixed, or sampled (depending of 

the simulation case and by using MC method described in Figure 33). Then the exchanged client 

to network power is generated (based on the algorithm of described by Figure 32) to obtain the 

active and reactive powers (respectively Pq,it and Qq,it) for the ongoing iteration. Secondly, both 
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powers associated to each customer and the reference voltage at the MV/LV post-station Vnl is 

used as input for the Load Flow calculation [77, 78] performed in order to characterize each 

simulated Monte Carlo state (the Load Flow calculation algorithm will be described below in 

Figure 35). 

 
Figure 34 : Flowchart of the developed and implemented algorithm for grid definition and 

Load Flow calculation in case 1 (Annual study algorithm). 
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Both powers associated to each customer and the reference value of the voltage at the 

MV/LV post-station Vnl are used as inputs for the Load Flow calculation [81, 82], which is 

performed in order to characterize each simulated Monte Carlo state (the flowchart of the Load 

Flow calculation algorithm is shown in Figure 35).   

 

Figure 35: Flowchart of the Load Flow calculation. 

 

The flowchart in Figure 36 summarizes the simulation process of the second simulation case. 

This process is the same as the first one, except the change in the SM data that has to be 

considered per season. So for each of the four seasons, the algorithm in Figure 35 is computed. 
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Figure 36: Flowchart of the implemented algorithm for case 2 simulation. 

 

2.5.4. Simulation results and reliability analysis 

Figure 37 shows the obtained overvoltage probability at each node of the network for case 

1 with sampled value of the resistance. Node 14 is the most critical node of the network while 

the three first nodes next to the ML/LV station are quite safe (node 2, 3 and 4).  

 

Figure 37: Probability of overvoltage at all nodes for an annual study with sampled value of 

the resistance. 

The voltage dip and overvoltage probability, at node 2 (the one directly linked to the post-

station) and at node 14 (the one at the end of the first radial line), resulting of the probabilistic 

tool simulation are shown on the tables below. The table 11 corresponds to the results for a 

fixed value of the line resistance and the table 12 for a sampled value on the annual CDF. 
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Table 11: Global voltage variation probability for two nodes on the same branch :  for a fixed 

value of the resistance. 

NIT = 10000 PROBABILITY 

Node Overvoltage Dip 

2 0 % 0 % 

14 7.101 % 0.684 % 

 

Table 12: Global voltage variation probability for two nodes on the same branch : for 

sampled values of the resistance. 

NIT = 10000 PROBABILITY 

Node Overvoltage Dip 

2 0 % 0 % 

14 6.613 % 0.666 % 

Regarding those values, using a sampled value of the resistance has an impact on the results 

of the probabilistic Load Flow. From table 11 values to table 12 values, a 6.9% decrease is 

observed on the calculated probabilities. There is no voltage dip or overvoltage occurrence 

during the annual simulation for node 2. This can be explained by the direct link of that node 

to the transformer secondary side (46m length between both nodes); which decreases the 

variation effect. Table 13 gives the overvoltage probabilities at node 14 for different cases. 

Table 13: Global voltage variation probability for the most critical node. 

Nit = 10000 Probability (occurrence percentage) for node 14 

Overvoltage Dip 

Winter Fixed R annual 1.781 % 5.656 % 

Fixed R Winter 2.184 % 5.944 % 

Sampled R Winter 2.029 % 6.025 % 

Spring Fixed R annual 9.012 % 0 % 

Fixed R Spring 11.090 % 0.009 % 

Sampled R Spring 10.192 % 0.012 % 

Summer Fixed R annual 10.551 % 0 % 

Fixed R Summer 13.885 % 0.001 % 

Sampled R Summer 12.443 % 0 % 

Fall Fixed R annual 1.469 % 1.633 % 

Fixed R Fall 1.594 % 1.657 % 

Sampled R Fall 1.619 % 1.869 % 
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Globally, it can be seen that using a same annual mean value of the line resistance, for 

seasonal study, affects the reliability indices of each season. In other words, it leads to consider 

the network safer than it actually is. By using a fixed mean value of the resistance based on its 

specific distribution to each season, the probability percentages found are more realistic and by 

integrating the sampled resistances values, the probability values are refined to values much 

more in relation with the weather conditions.  

For winter simulations, the apparition of voltage dips is more probable than overvoltage, 

because during that season the temperatures are very low and then decrease the resistance value. 

For summer cases, the overvoltage occurrence is higher with a very important increase, 

compared to the winter values, for all the cases. Furthermore, using sampled values of Rt, the 

seasonal study shows that there is a 5.83% more risk for an overvoltage to appear in summer in 

comparison with the annual study result. 

Sampled values of Rt in summer allow us to observe a 10.4% decrease of the overvoltage 

probability regarding results for fixed summer resistance values. The simulation results and the 

obtained accuracy, especially in the hottest and coldest season, validate our hypothesis about 

the impact of the weather conditions on the overhead line resistance in a probabilistic LF study. 

It is therefore very helpful to include temperature-based resistance distribution in the network 

model within a probabilistic LF study.  

 

2.6.Conclusion 

Chapter 2 presents the temperature impact on the characterization and modeling of LV 

cables. This preliminary study finds all its interest in a logic of familiarization with the 

measurement data. It is part of a perspective of setting up the first models aimed at validating 

the completeness of the database. In addition, applying reverse engineering (exploiting 

instrumentation data to identify the system internal parameter) can make a huge difference for 

approximating the network theoretical impedance (often used by the DSO for their management 

process). 

It is known that voltage control is an important point in the electrical network management. 

European standards have specific rules over the voltage magnitude variation. A significant point 

is then to identify, with the most accuracy possible, the critical nodes especially when there is 

a large penetration of PV production in the network. All the above cases converge towards a 

validation of the impact of the line resistance on the probabilistic LF study result especially in 

a seasonal study. This contribution provides a useful tool for voltage control of a radial LV 

network with consideration of PV production variation and temperature impact on the network. 

By identifying the critical node with the higher accuracy possible and regarding the imposed 

European limitations, some active network management studies can be developed in order to 

avoid overvoltage or voltage dip risk at an hourly scale and per season.  

However, these temperature variation problems and the overvoltage problems they caused, 

considerably increase the cable ageing. This ageing process typically leads to embrittlement, 
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cracking, and eventual failure of insulation materials, exposing then the conductor and risking 

potential short circuit and leakage current. The conclusions of the above study therefore lead us 

to wonder about the impact of the degradation of said insulation on the evolution of the 

electrical parameters of the cable within a low-voltage electrical network. The above 

investigation results depend on the specific parameters of the considered cable; hence, there are 

much needed information for each type of cable used in order to have a precise structure of the 

network. Given the importance of those parameters values, of the each deployed cables, that we 

do not know, this opens up the view to integration of AI methods and shows their importance 

in this research. 
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3.1.Introduction 

In this chapter, a framework is proposed to evaluate the impacts of the cable insulation 

degradation on the nodal voltages in a LV distribution system. The insulation degradations can 

create a flow of leakage currents that are distributed in the overall electrical network and thus 

can cause serious problems on the correct operation of the latter. 

For the study, as the criticality of the cable insulation degradation is not known, an uncertain 

variable is considered and can change within a predefined range. The presented analysis method 

is organized in two stages. Extensive Monte Carlo simulations are carried out in order to 

characterize the uncertain nature of the insulation material degradation. Then, load flow 

calculations estimate the nodal voltages in each scenario created by MC simulations. 

 

3.2.Characterization of the Cables Insulation Degradation 

Electrical cables are daily subject to mechanical damages, excessive heat, ageing of 

material, and electrical stress. These operating conditions cause degradations of the cable 

insulation material and in extreme cases, the cable can totally or partially loose its insulation. 

In that situation, the insulation impedance decreases and a leakage current flows between the 

cable and the ground. The impedance associated to that leakage current includes the resistance 

of the degraded cable insulation as well as the ground resistance. The remaining of this section 

focuses on the calculation of the resistance associated to the degraded insulation.  

In a cable with a degraded insulation, the leakage current flows radially outwards from the 

center towards the surface of the cable along its length. A cylindrical cable is considered with 

a total radius R, a length L and a conductor radius equal to r (Figure 38).  

 

Figure 38: Geometric representation of a portion of a cylindrical cable. 

The radius corresponding to the insulating material is equal to R-r. An elementary section 

with a radius x and an insulation material thickness dx is considered (infinitesimally small layer 

of insulation) [83]. The area of this elementary section (the cylinder area) is equal to 2πLx. The 

insulation resistance of this elementary cylindrical area is given by: 

 

 

where Riso-dx and ρ are respectively the resistance and the resistivity coefficient of the insulation 

material. 

From equation (3.1), the insulation resistance of the cable is calculated by integrating the 

thickness value dx over the radius corresponding to the insulating material:  

𝑅𝑖𝑠𝑜 =
𝜌

2𝜋𝐿
∫

𝑑𝑥

𝑥

𝑅

𝑟

=
𝜌

2𝜋𝐿
ln

𝑅

𝑟
  (3.2) 

𝑅𝑖𝑠𝑜−𝑑𝑥 =
𝜌𝑑𝑥

2𝜋𝐿𝑥
 (3.1) 
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The above equation gives a general formulation of an electrical cable insulation resistance. 

By assuming that the cable is losing a part of its insulation thickness in case of degradations, 

the cable radius R will be reduced (as well as the resistivity coefficient ρ) while the conductor 

radius r will remain constant. That radius variation will tend to decrease the insulation resistance 

value (equation (3.2)). Figure 39 shows the CDF profile of the résistance with scenarios for 

insulation material degradation. 

 

Figure 39: CDF profile of the résistance with degradation. 

 

3.3.Modelling of the LV line in degraded conditions 

To model the electrical line, in damaged insulation conditions, the resistance variation (𝑅𝑖𝑠𝑜) 

due to the insulation degradation, established in equation 3.1, is incorporated in the R, L model 

of the line. Indeed, a shunt variable resistance, between the leakage point (named d in Figure 

40) and the ground, models the current discharge over an electrical insulation material. Figure 

40 shows the representation of this new electric path (series combination of insulation resistance 

Riso and ground resistance Rg) in the line model.  

 

Figure 40: Equivalent electrical circuit of a line having a damaged cable insulation. 

Considering that 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 is the total length of the line i, 𝑙𝑒𝑛𝑔𝑡ℎ𝑖ℎ
represents the length of 

the healthy part of this line and 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑤
 is the length of the section starting from the leakage 

point to the next node. 

𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑤
+ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖ℎ

= 𝑙𝑒𝑛𝑔𝑡ℎ𝑖  (3.3) 

d 
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From the circuit in Figure 40 , three impedances are defined according to the different parts 

of the model:  

𝑍𝑎𝑑 = 𝑅𝑖1
+ 𝑗𝑋𝑖1

 (3.4) 

𝑍𝑏𝑑 = 𝑅𝑖2
+ 𝑗𝑋𝑖2

 (3.5) 

𝑍𝑐𝑑 = 𝑅𝑖𝑠𝑜 + 𝑅𝑔 (3.6) 

To apply a load flow calculation method of voltages, these three impedances 𝑍𝑎𝑑, 𝑍𝑏𝑑 and 

𝑍𝑐𝑑  (represented by equation (3.4) to (3.6))  are converted to an equivalent delta connection 

circuit, which is represented in Figure 41. 

 

Figure 41: Equivalent electrical circuit model of the damaged line. 

This new PI model has resistive parallel branches with different resistance values depending 

on the position of the leakage point. The delta model parameters are based on the following 

equations:  

𝑍𝐴𝐵 =
𝑍𝑎𝑑  𝑍𝑏𝑑  +  𝑍𝑏𝑑 𝑍𝑐𝑑  +  𝑍𝑐𝑑  𝑍𝑎𝑑

 𝑍𝑐𝑑
 (3.7) 

𝑍𝐵𝐶 =
𝑍𝑎𝑑  𝑍𝑏𝑑  +  𝑍𝑏𝑑  𝑍𝑐𝑑  + 𝑍𝑐𝑑  𝑍𝑎𝑑

 𝑍𝑎𝑑
 (3.8) 

𝑍𝐴𝐶 =
𝑍𝑎𝑑  𝑍𝑏𝑑  +  𝑍𝑏𝑑  𝑍𝑐𝑑  + 𝑍𝑐𝑑  𝑍𝑎𝑑

 𝑍𝑏𝑑
 (3.9) 

3.4. Proposed Method to analyze uncertain degradations on network voltages  

3.4.1. Principle 

The impact of the insulation degradation of the line on the nodal voltages is now analyzed. 

Monte Carlo simulations are used to create wide series of scenarios that cover the possible 

values of the unknown insulation resistance of the line. The impacts on the nodal voltages are 

then evaluated by load flow calculations. The overall procedure of the proposed method is 

depicted in Figure 42. 

3.4.2. Monte Carlo (MC) algorithm 

In the proposed MC tool, firstly, the possible variation range of the uncertain variable 

(insulation resistance of the line) is defined. Then, a proper number of points is created between 

the lower and upper bounds of the defined range according to the desired accuracy. Afterwards, 

the probability density function corresponding to those points is obtained by calculating their 
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standard deviation and mean value. Then, the obtained probability density function is 

transformed into a cumulative distribution function (CDF).  

In order to create N scenarios for the studied uncertain parameter (insulation resistance of 

the cable), a sampling procedure is applied to the obtained CDF. A uniformly distributed 

random value between 0 and 1 is chosen. It is assigned to the CDF on the vertical axis and its 

corresponding value on the horizontal axis gives the variation that the uncertain parameter 

under study can have in one scenario. The sampling procedure is repeated N times in order to 

create N scenarios. 

 

Figure 42: Overall procedure of the proposed method (NRLF : Newton-Raphson load flow) 
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3.4.3. Newton-Raphson load flow (NRLF) study  

The Newton-Raphson load flow (NRLF) study is used to calculate the network voltages for 

all scenarios created by the MC simulations. In the NRLF, the nonlinear algebraic equations of 

the nodal powers are linearized by expanding them through Taylor series. They constitute the 

so-called Jacobian matrix, which gives the linearized relationships between the small changes 

in the real and reactive powers with respect to the small changes in the nodal voltage angles 

and magnitudes as below:  

[
∆𝑃
∆𝑄

] =  [

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝑉

] [
∆𝜃
∆𝑉

] =  [
𝐽1 𝐽2

𝐽3 𝐽4
] [

∆𝜃
∆𝑉

] (3.10) 

Δ and ΔV denote the vectors of small variations in the voltage angles and magnitudes at 

the P-Q buses, respectively. Also, ΔP and ΔQ are the vectors of errors between the scheduled 

and calculated powers at the P-Q (load) buses. The mathematical relations to obtain the 

elements of the Jacobian matrix have been given in [84]. The document [85] proposed a 

structured process to build the power flows equations in NRLF for an AC system. The flowchart 

to calculate the Jacobian matrix from equations (3.7) to (3.9) are explained by the figure below: 

 

Figure 43: Flowchart to calculate the Jacobian matrix in NRLF. 

Once the content of Jacobian matrix is determined, using ΔP and ΔQ, which are errors 

between the sensed powers and the computed ones, system voltages are updated. Then, the new 
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voltages are used to update ΔP and ΔQ vectors as well. In the next iteration of the NRLF, the 

Jacobian matrix elements will be updated in order to obtain the new voltages and eventually 

new ΔP and ΔQ. The NRLF in this iterative-based procedure minimizes the errors (ΔP and ΔQ). 

The iterative procedure stops when a predefined error threshold is met. 

 

3.5. Investigations on impacts of cable degradations 

3.5.1. Followed scientific method and definition of study cases 

The proposed method based on the MC simulations and NRLF calculations is used here in 

order to evaluate impacts of insulation degradations on the nodal voltages. The cable insulation 

degradation is taken into account according to the formulation developed in section 3.2. It is 

supposed that due to cable degradations, the thickness (radius) of insulating material is reduced. 

The radius of the insulating material is considered as an unknown (uncertain) variable, which 

will be characterized through the created Monte Carlo scenarios. 3000 scenarios are created 

during the MC study. The NRLF study is then performed in each created scenario to calculate 

the nodal voltages. 

For the scenario building, the insulation radius of the cable is assumed to vary between 0.01 

mm and 1 mm. The former value corresponds to an extreme insulation degradation and 1 mm 

to moderate degradation situations. The nominal insulation radius of the studied cable is equal 

to 1.5 mm [86].  

The conductor cross section of the studied cable is equal to 50 mm2, from which the radius 

of the conductor is equal to 3.9 mm. The insulation resistance (R_iso) is calculated by using 

equation (3.2) considering the created scenarios for the insulation radius variations. It is 

supposed that the insulation degradation occurs in a section of cable with 1 meter length (L=1 

meter). In addition, the resistivity of insulating material (ρ) is considered equal to 3.9 MΩ cm 

[87]. It should be noted that, theoretically, the insulating materials of cables (e.g. PVC) have a 

volume resistivity bigger than 109 Ω cm. However, in this work, in order to consider the 

deterioration of the insulating characteristic (besides the reduction of thickness of insulating 

materials), a lower value of resistivity is taken into account. In reality, the resistivity of the 

cable insulation decreases with the ageing, moisture, voltage and temperature increase.  

In order to evaluate impacts of insulation degradations, three study cases (as presented in 

Table 15) are defined on the studied LV network presented in Figure 11 of section 2.2. 

Table 14: Considered study cases 

STUDIED 

CASE 

DESCRIPTION  

Case 1 Insulation wear at the beginning of the feeder (line between nodes 2 and 3) 

Case 2 Insulation wear at the end of the feeder (line between nodes 13 and 14) 

Case 3 Simultaneous insulation wear in the selcted lines i.e. lines between nodes 2 and 3, 8 and 

9, 14 and 15, as well as, 17 and 18  
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The nominal voltage at bus 1 is equal to 230 volts and considered as a constant value (i.e. 

bus 1 is the slack node).    

In order to study the impacts onto the operating conditions of the LV network, the three 

different locations of degradations will be tested in two situations: heavy load demand with a 

light PV generation and high PV generation with a low load demand. The former operating 

point studies the impacts of the insulation degradation on the network having initial voltage 

drops, while the latter one investigates it in the network with initial voltage rises. 

 

3.5.2. Operation in high load and low PV generation conditions  

In the first studied operation conditions, load demands are assumed at 85% of their nominal 

values with no PV productions. This situation with a high load demand should induce voltage 

drops. Figure 44 shows the boxplots of obtained nodal voltages in considered scenarios for the 

three studied cases. The box includes the 75th to the 25th percentiles of the voltage profile. 

The dashed curve shows initial voltages with healthy cables (no insulation degradation).  

As it can be seen in Figure 44(a), when the cable insulation degradation happens near the 

bus 1 (case 1), the boxplot of voltage variations has a small range. However, in the extreme 

insulation degradation scenarios, voltage drops to -10 volts are observed.  

In Figure 44 (b), in case of a degradation far from the slack bus (case 2), the boxplot of nodal 

voltage variations becomes larger. This is explained by the fact that the leakage current in the 

branch between nodes 13 and 14 passes through whole lines in the upward direction of node 

13, which causes more voltage drops compared to case 1. In the extreme insulation degradation 

scenarios of the case 2, the nodal voltages reduce to around 100 volts, which indicates more 

than 115 volts of voltage reduction compared to the voltages of healthy lines.  

Finally, in Figure 44(c), for simultaneous insulation degradations in four lines, the boxplots 

of nodal voltages are noticeably enlarged with respect to the ones in cases 1 and 2. In the 

extreme insulation degradation scenarios of case 3, the voltages can go down to 90 volts.  

 
(a) 
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(b) 

 
(c) 

Figure 44: Evolution of voltages in heavy load - light PV generation situation: (a) case 1 

(damage between nodes 2 and 3); (b) case 2 (damage between nodes 13 and 14); (c) case 3. 

For all studied cases, most of voltage samplings (in the boxplot) are over the minimum 

voltage level (90% of 230V) and the standard is satisfied. The red points in the above figures 

highlight the voltages values outside the boxplot in the created scenarios.  

As it can be seen, the extreme voltage drops appear in the voltage results as outliers. The 

outliers in the voltage results are justified by the fact that the insulation conductance (1/Riso) 

applied in the NRLF study is a nonlinear equation. Consequently, for specific low values of 

insulation resistance, the insulation conductance noticeably increases, which leads to extreme 

voltage drops shown by the outliers. 

Moreover, the difference in voltage threshold between nodes 15 and 16 is linked to the fact 

that node 15 is at the end of the network and therefore has the lowest position, while node 16 is 

a branch of node 5 in the middle of the network. 
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3.5.3. Operation in low load demand and high PV generation conditions  

In the second studied operation conditions, the load demands are considered low (equal to 

13% of their nominal values) while PV generations are at 80% of their rated values (on each 

node). As it can be seen in Figure 45, voltage rises appear and are caused by the PV generations 

when there is no cable insulation degradation. 

In Figure 45(a), when the insulation degradation happens at the line between nodes 2 and 3 

(i.e. case 1), the node voltages decrease by around 4-5 volts. In addition, the boxplots in Figure 

45(a) are very small because the voltage variations are very small among the different scenarios. 

If degradations are located at the end of the feeder (case 2), the nodal voltage variations are 

considerably reduced and the heights of boxplots are very small (Figure 45(b)). In the most 

extreme degradation scenarios, the nodal voltages can reach 170 volts.  

In case 3, with simultaneous insulation degradations along the line, the boxplots of nodal 

variations become larger, and the voltages drop to around 140 volts (figure 44.c).  

For all studied cases, most of voltage samplings (in the boxplot) are under the maximum 

voltage level (110% of 230V) and the standard is satisfied. Moreover, we can note that most of 

voltage samplings are concentrated and does not vary a lot. 

 
(a) 

 
(b) 
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(c) 

Figure 45: Evolution of voltages when the PV generations are high and load demands are less 

important : (a) in case 1; (b) in case 2; (c) in case 3. 

 

3.6.  Conclusion 

In this chapter data from smart meters are used to investigate the influence of the 

degradation of the insulating line material on the voltage variations.  

Due to the uncertain nature of the cable insulation degradation, a probabilistic framework 

based on the Monte Carlo simulations is developed to generate different uncertain degrees of 

the insulation degradation. The load flow calculations are then carried out in order to obtain the 

nodal voltages associated to each created scenarios. Regarding the extensive scenarios, the 

insulation wear of cable lines can cause important voltage drops of more than 50% depending 

on the position and degree of the cable insulation degradation. The exposed method provides 

the distribution of nodal voltages variations at different nodes of the studied network. With 

these results, the probability of voltage variations can also be established. 

However in this study, the various generated states of the insulation wear have been 

generated as probability values because the ageing process of cable insulation materials is not 

known in real time. This chapter, then, points out the interest of implementing an automated 

framework for the classification of electrical Low Voltage cables degradation as long as the 

degree of degradation is not a self-updating quantitative variable. To do so, chapter 4 is oriented 

towards the development of a machine learning-based classification tool for this purpose.  
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4.1. Introduction 

Currently, the monitoring of HV transmission lines with specific meters and communication 

systems is a cost-effective approach. In LV distribution systems, it would be very expensive to 

deploy sensors and dedicated information and communication technologies for monitoring 

cables and lines because the entire electrical network is large with many points of common 

coupling. Moreover, as explained in the introduction, part 4, the architecture, sizing  and 

parameters of existing lines in LV networks are poorly known. Without satisfactory 

mathematical models (which are based on the physics), a data based modeling can be an 

advantageous alternative to monitor the correct operating of LV systems.  

A variety of data analysis techniques can be applied to extract a meaningful knowledge 

from large databases. Among these techniques, an important feature present in Machine 

Learning methods is their ability to be adaptable and so parametrized with the data. The 

evolution of learning theory in recent years can be explained in particular through the 

development of data servers for storing information and the rise of Big Data methods. To tackle 

the challenge of monitoring LV networks, the research work in this chapter aims to take 

advantage of available data from smart meters and test Machine Learning (ML) capabilities in 

order to detect the soft degradation of cable insulation at early-stage and regardless of the type 

of fault. 

So, in the second part of this chapter, we are going to present the general scheme of used 

Machine Learning algorithms using smart meter measurements for the monitoring of low-

voltage distribution grids. 

Before the development for the LV network application with ML algorithms, data bases 

have to be generated, e.g. useful data that contain operating points of the LV network systems 

in normal operation conditions and degraded operation conditions. In the third part, a 

framework is proposed to generate and organize data that will be used by algorithms. Thanks 

to the previously presented line model (chapter 2, part 2.2), impedance values are generated for 

different conditions related to the thickness. Then, within sensed data by smart meters, node 

voltages are estimated with Low Flow calculations and a “knowledge” database is built. The 

“knowledge” data base is split into two subsets: a “training subset” and a “test subset”. The 

“training subset” will be used to implement and parameter the considered ML techniques for 

classifying the state of lines. The “testing subset” is containing data not used previously during 

the learning stage. It will be used to evaluate achieved performances and compare the 

considered ML techniques. 

In the fourth part, graphical tools are presented to analyze the results and interpret them. 

The best ML technique  is the one, which gives minimum classification errors. 

In part five, various ML are experimented and assessed within the same “knowledge” 

database (and so conditions). The purpose is to classify the cable insulation wear and so 

automatically detects faults.  

 

4.2.State of the art on implemented Machine Learning methods 

4.2.1. Objective of the investigation 

Thanks to measurements from smart meters (part 2.2 and 2.3), two types of input data are 

available: the net demand and the node voltage at each network node and every quarter over a 
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time horizon. Relying on these data, we are going to explore, apply and compare different 

machine learning techniques to detect the operating condition of lines and cables of the 

electrical network. This problem is a classification, also known as pattern recognition, 

discrimination, or supervised learning.  

In a classification task the response variable is discrete and is known as the class variable, 

and its values as the classes. Here, a pattern k is defined by a vector of input data xk and an 

output yk. In a simple and first approach, two states have to be decided for each line (between 

two nodes of the network): no insulation wear or insulation wear of the line. So, the considered 

output data yk is a discrete value (that may correspond to +/- 1 or a label). This separation of 

objects into two categories, or "classes", corresponds to a binary classification problem. 

Learning then consists of determining a function f such that f(xk) = yk. 

Indeed, we are going to consider supervised learning approaches to design and parameter 

ML techniques with a dataset of input data corresponding to known output data (labeled data). 

The building of this learning database will be detailed in part 4.3.1. Figure 46 presents a visual 

representation of the supervised ML process. The objective is to generate automatically 

knowledge rules (so-called the Model) from a database containing "samples" of inputs (so-

called the Data) with the corresponding outputs. With new input data (represented by the circle 

symbol in Figure 46), a classification of the observed operating mode can be predicted into two 

classes (represented by the star and square groups in figure 45). 

 

Figure 46: Visualization of supervised Machine Learning approach. 

The objective of a classification task is to derive a rule or set of rules, which determine the 

class each input data belongs, or is most likely to, belong to. These rules must be determined 

from another set of data (the training data set), whose class values are known. These supervised 

learning approaches can be divided into two categories [88]:  

• Classification methods dispatch the input observations in categorical groups and lead to 

the construction of predictive models with discrete responses (yk.). 

• Regression methods describe the relationship between inputs variables (so called 

predictors) and the outputs (through a mathematical function) and lead to the 

construction of predictive models with continuous responses. 

There are many methods used for classification. In following parts, we are going to present 

the general scheme of the supervised machine learning methods that have been used in this 
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research work. As the corresponding algorithms are well known and are available as “open 

source” codes, we will not present implementation details. 

 

4.2.2. k-nearest neighbors algorithm 

The k-nearest neighbor (kNN) is a supervised Machine Learning (ML) algorithm that can 

be used for classification and regression models. A kNN algorithm classes new unlabeled data 

according to their similarity to k existing “reference” data, which are called neighbors, in a 

training set (kNN representation [89].Figure 47).  

 
Figure 47: kNN representation [89]. 

Each new observation x is compared to those that already exist by using a distance 

calculation (such as the Euclidean distance, cosine of the angle formed by the two observations, 

etc.). Then, the algorithm assigns to the observation x, the class, which is the most frequent 

among the k examples of the training set closest to x. Hence, the class with the k smallest 

distances is assigned to x. Hence, KNN algorithm assumes the similarity between the new 

observation and available cases and put the new observation into the class that is most similar 

to the available categories.  

The algorithm therefore requires knowing k, the number of neighbors to consider. For 

choosing the right k, the kNN algorithm can be run several times with different values of k. 

Then the right number of neighbors k will be the one that has led to the best performance (i.e., 

the lowest error and the best prediction accuracy). 

For classification applications, kNN have no parameters we can tune to improve the 

performance. Strictly speaking, kNN does not have any learning involved and no objective 

function to optimize.  kNN supports non-linear separations and can only provide a class (label) 

as an output. Studies have proved that kNN is a simple but highly efficient and effective 

algorithm for solving real life classification problems (such as the recommendation of movies 

on NETFLIX) [90, 91]. In electrical engineering applications, kNN is mostly used for fault 

detection and classification but also for power quality classification. The kNN algorithm has 

also the advantage to be a versatile and easy to understand and to implement method with no 

need of initial assumptions. However, when the volume of samples in the dataset (so called 

predictors) increases, the kNN algorithm tends to become slower. Even if there are more precise 

classification algorithms, kNN remains a first and simple algorithm to model a classification 
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problem and can achieve a high classification accuracy in problems with unknown distributions, 

while familiarizing with the available database.  

For this study, the kNN algorithm has been implemented with the Euclidean distance as 

the distance measure because of the ease of calculations and possible manual checking of 

obtained results.  Also, a limited number of neighbors (k=5) has been applied. 

 

4.2.3. Decision tree 

Decision Tree (DT) is a supervised Machine Learning (ML) algorithm used in both 

regression and classification problems (usually called CART : Classification And Regression 

Trees). For classification purposes, DT is a largely used non-parametric method.  

A decision tree is based on a hierarchical representation of the data structure in the form of 

sequences of decisions (tests) with the goal of predicting a class. The root represents the whole 

domain. Each level of the tree represents a partition, with nodes at that level representing 

partition cells (domain subsets). So, the end-nodes are the classification and the intermediate 

nodes are the tests on the properties of the observations (each circle of Figure 48). In other 

words, building a decision tree is a recursive process, going from the properties (drawn by 

branches) to the conclusions about an observation (drawn by leaves). In this data modeling, 

each observation is described by a set of intermediary variables, which are tested in the nodes 

of the tree. Testing is done in internal nodes and decisions are made in leaf nodes.  

Let us consider a binary classification problem where we have to classify a student in two 

classes, the obtained results from the ML technique can be correct (true) or false in each class. 

This classification will be made based on his result to three different exams (X1, X2 and X3 

called in scientific jargon the features). If the student has at least a certain value (so-called here 

the median) in each of the three exams, he will success the semester. However if he has less 

than the median value in one of the exams, he will fail the semester.  

Figure 48: Decision tree representation. 
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The decision tree starts with a root node (property of X1 in Figure 48) and branches toward 

possible outcomes. Each of those outcomes leads to additional nodes (property of X2 and X3), 

which also branch toward other outcomes. In other words, it is a visual representation of the 

decision-making directly related to the problem to be solved.  

A Decision Tree is a commonly used and highly understandable Machine Learning method. 

It is a reliable algorithm for separating a dataset (predictor variables set) into several given 

classes by providing some clear indications about the most relevant predictors. For 

classification problems, a DT algorithm does not need much computation and does not rely on 

functional assumptions (i.e., it is not affected by any non-linearity) while it can build very 

complex trees and encounter overfitting problem. Also, the creation of optimal decision trees 

can be obstructed by the presence of dominating classes. DT accuracy reduces however when 

the number of training examples to the number of classes is low. Decision Tree is a widely used 

algorithm that gives high-quality results with the data, which mostly depends on conditions [92, 

93]. In electric power system applications, DT is used in load consumption prediction and load 

forecasting, preventive and corrective control, power systems security assessment, etc. [94]. 

The DT algorithm, in this study, is an adjusted binary classification decision tree.  

 

4.2.4. Logistic regression 

The Logistic Regression (LR) is a parametric model, which supports linear solutions and 

can derive to a high confidence level (regarding its prediction). LR is a powerful algorithm for 

finding boundaries between two classes. Mathematically, a LR algorithm uses regression to 

predict the probability (between 0 and 1) of a new observation x to be classified into y, a given 

class (see Figure 49).    

 
Figure 49: Logistic regression representation [95]. 

A mathematical representation of LR is now developed. Considering a two-class 

classification problem, an analogy is made between the labels and the output classes as shown 

in Table 15.  

Table 15: Analogy between labels and classes. 

State of the line Labels/Class Class in LR (variable y) 

No insulation wear H 1 for the positive class  

Insulation wear M  0 for the negative class  
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The output ℎ(𝑥) of a Logistic Regression model is the probability of a new observation x 

to be classified into a class y and will be bounded by a function h, as below:   

0 ≤ ℎ(𝑥) ≤ 1  (4.2) 

{
𝐼𝑓 ℎ(𝑥) ≥ 0,5 : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 1

𝐼𝑓 ℎ(𝑥) < 0,5 : 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑦 = 0
 (4.3) 

For this classification problem, a sigmoid function h can be used to map predictions to 

probabilities: 

ℎ(𝑢) =
1

1 + 𝑒−𝑢
 (4.4) 

The input of the sigmoid function (u) is the weighted sum ( weights: 𝜃) of the observation 

vector inputs (x). Then ℎ𝜃(𝑥) can be written as below: 

ℎ(𝑢) = ℎ(𝜃𝑇𝑥) = ℎ𝜃(𝑥) (4.5) 

θ is a vector of weights with the same size as the observation input vector x. The key point 

is then to find the right values for parameters θ by solving a minimization problem of a cost 

function (J): 

min
𝜃

[ 𝐽(𝜃) ] (4.6) 

The cost function is a measurement of the prediction error over M observations (indexed 

by the variable m). 

𝐽(𝜃) =
1

𝑀
∑ 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑚)), 𝑦(𝑚))

𝑀

𝑚=1

 (4.7) 

m is the index of observations and M is the total number of observations in the training 

subset. The function cost is the quadratic classification error that is expressed as follows [96]: 

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) =  
1

2
(

1

1 + 𝑒−(𝜃𝑇𝑥)
− 𝑦)

2

 (4.8) 

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) = {
− log(ℎ𝜃(𝑥))  𝑖𝑓 𝑦 = 1

− log(1 − ℎ𝜃(𝑥))  𝑖𝑓 𝑦 = 0
 (4.9) 

The cost function to be minimized will be equal to: 

𝐽(𝜃) = −
1

𝑀
∑ [𝑦(𝑚) 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑚))) + (1 − 𝑦(𝑚)) 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑚)))]  

𝑀

𝑚=1

 (4.10) 

Logistic regression method is the go-to method for binary classification problems (problems 

with two class values). LR is easy to implement, fast and very efficient to train. LR algorithm 

gives a good accuracy for simple datasets and the provided model coefficients can be interpreted 

as indicators of predictor importance. LR has the advantages to be less likely to lead to over-

fitting except in high dimensional datasets. Logistic Regression methods are used, in electrical 
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engineering, for electricity monitoring, visualization and prediction but also for fault detection 

in renewable energy production [97].  

 

4.2.5. Random Forest 

Random Forest (RF) are supervised Machine Learning (ML) algorithms used to solve both 

regression and classification problems. The Random Forest is a flexible ensemble Learning 

method, which is based on combination of the results from a multitude of decision trees 

(constructed at the RF training time) – the forests. For classification problems, RF is an effective 

method because it corrects the overfitting problem of DT (as presented in section 4.2.3). The 

output of the RF is a more accurate and stable prediction resulting from the merges of the built 

multiple decision trees (see Figure 50). 

 
Figure 50: Random Forest representation [98]. 

There are two main ways for combining the outputs of multiple decision trees into a random 

forest : 

- Bagging (general idea of the bagging method is that a combination of learning models 

increases the overall result.) ; 

- Boosting (similar idea as the previous one except that the samples are weighted for 

sampling so that samples, which were predicted incorrectly get a higher weight and are 

therefore sampled more often). 

Each individual tree in the random forest spits out a class prediction and the class with the 

most votes becomes the model’s prediction (see figure below). The key effect is that the trees 

protect each other from their individual errors (as long as they do not constantly all err in the 

same direction). While some trees may be wrong, many other trees will be right, so as a group 

the trees are able to move in the correct direction. So, for random forest to perform well, the 

predictions need to have low correlations with each other. Random forest adds additional 

randomness to the model, while growing the trees. Instead of searching for the most important 

feature while splitting a node, it searches for the best feature among a random subset of features. 

This results in a wide diversity that generally results in a better model. Consequently, in random 

forest, only a random subset of the features is taken into consideration by the algorithm for 

splitting a node.  
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Figure 51: Visualization of a Random Forest Model Making a Prediction [99]. 

In electrical engineering, the random forest algorithm is used to evaluate power 

sustainability and cost optimization in Smart Grid as well as to classify faults for active power 

system networks. 

Random Forest has the advantage to be versatile and make it easy to view the relative 

importance it assigns to the input features. RF produces, even without hyper-parameter tuning, 

a great result most of the time. It is also one of the most used algorithms, because of its 

simplicity and diversity.  

However, the input data characteristics can affect the RF performance. Also, a large 

number of trees can make the algorithm too slow and ineffective for real-time predictions. In 

general, these algorithms are fast to train, but quite slow to create predictions once they are 

trained. A more accurate prediction requires more trees, which results in a slower model. In 

most real-world applications, the random forest algorithm is fast enough but in some situations 

where run-time performance is important, other approaches would be preferred. Our performed 

work will focus on bagging decision trees for random forest classification in chapter 5.  

 

4.2.6. Support Vector Machine 

Support Vector Machine is a supervised Machine Learning (ML) algorithm used in both 

regression and classification problems. SVM is a robust prediction method that is based on 

statistical learning frameworks.  

The purpose of a SVM is to learn a linear function in the feature space of input data that 

deviates from the learning outputs by at most a prescribed distance (maximum margin). For a 

classification problem into N classes, the algorithm finds a hyperplane in an N-dimensional 

space that distinctly separates the data points. The optimal hyperplane divides a plane into parts 

where each class has it side.  As example, for a binary classification problem, Figure 53 shows 

hyperplanes that divide the plane into two parts. There are many possible hyperplanes that could 

be chosen to separate the two classes of data points. The objective of a SVM algorithm will be 

to find a plane that has the maximum margin, i.e the maximum distance between data points of 

both classes, in order to correctly separate these two classes. Maximizing the margin distance 
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provides some reinforcement so that future data points can be classified with more confidence. 

The data points that are sufficient to determine the maximum margin (optimal separating 

hyperplane) are the support vectors. 

  
Figure 52: Support Vector Machine representation for two classes [100]. 

The dimension of the hyperplane depends upon the number of classes. If the number of 

classes is 2, then the hyperplane is just a line. If the number of input classes is 3, then the 

hyperplane becomes a two-dimensional plane. For more classes, SVM algorithms build 

themselves the above hyperplane and so are very interesting for multiclass problems. 

 

Figure 53: Visualization of a SVM hyperplane for two and three classes problems [100]. 

The One-vs-One strategy splits a multi-class classification into one binary classification 

problem per each pair of classes. For the N-class instances dataset, N*(N -1)/2 binary classifier 

models have to be generated. Using this classification approach, the primary dataset are split 

into one dataset for each class opposite to every other class. The number of class labels present 

in the dataset and the number of generated binary classifiers must be the same. 

The One-vs-All strategy splits a multi-class classification into one binary classification 

problem per each pair of classes. For the N-class instances dataset, N-binary classifier models 

have to be generated. The number of class labels present in the dataset and the number of 

generated binary classifiers must be the same. 

The support vector machine is a powerful tool for binary classification, capable of 

generating very fast classifier functions following a training period. For the purpose of this 
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study, the SVM algorithm is a full trained, multiclass model, which used the One-vs-All 

method. 

 

4.3.Proposed approach for the development of a ML based classifier 

4.3.1. Building of a knowledge database 

In a first stage, a working database is created with the voltage values and Net Demand 

values at each node of the considered LV distribution network. The Net Demand (ND) data are 

obtained with SM measurements at each quarter of an hour (q), the PV production PVi  and the 

Load demand Loadi at each node i, as  expressed:  

𝑁𝐷𝑖(𝑞) = 𝐿𝑜𝑎𝑑𝑖 (𝑞) − 𝑃𝑉𝑖(𝑞) (4.1) 

To generate the database in healthy cable conditions, only the line model of section 2.4.3.1 

is used to calculate the nodal voltage with these SM measurements. To generate the database in 

degraded cable conditions, thickness scenarios are used to represent the radius variations 

(according environmental conditions and among seasons, a year,…). They are generated by a 

random sampling of cdf (chapter 3, section 3.4). Then, the variable values of the cable 

impedances are calculated. Impedance values are used by a Newton-Raphson Load Flow 

(NRLF) based algorithm (as explained in section 3.4.3) that calculates the AC node voltages 

with measured data (each quarter q of each day). Figure 54 shows the flowchart of the synthetic 

creation of the knowledge database containing nodal voltages (the global flowchart of the 

proposed approach including the classification process is presented in Figure 61). 

 

Database construction 
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q 
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scenarios 

Measured 

PV Database 

Day  

q 

Measured 

Demand Database 

Net Demand (ND), Nodal Voltage 

Knowledge 

database 

Network model 

Load Flow 

calculation 

 

Net Demand and Voltage 

profils construction 

 

Uncertainty propagation 

« T » line model  

Delta line model 

ZAB ZAC ZBC :  

Line parameters 

 
Figure 54: Flowchart of the synthetic creation of the database. 
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4.3.2. Labelling data 

For the evaluation of the cable state, two classes are defined for each observation in the 

database (see Table 16). The class H is associated with the cables without insulation wear while 

the class M is used to label the cables that present a certain degree of insulation wear.  

Table 16: Label table for the observations. 

Cable state Labels Description 

No insulation wear H H for Healthy  

Insulation wear M M for Medium   

 

For the sake of simplicity, the presented analysis is carried out on a part of the network, 

which is in the backward direction of node 3 (Figure 11). The input node (i.e., node 2) is 

connected to customer C1 while the output node (i.e., node 3) is connected to customer C2. The 

first node (i.e., node 1) is connected to the secondary side of the transformer and is supposed to 

be at the 230V reference value. In this study, one month of SM data is used to build the 

knowledge dataset. For each day, 96 measurements are collected. The total number of 

observations is thus equal to 2880 measurements (i.e., 30×96). Those 2880 observations are 

created while ensuring to cover a uniformity of both classes (healthy state and medium degraded 

state) in the synthetic dataset. Table 17 shows how the cable states are distributed in the 

knowledge database. 

Table 17: Observations in the knowledge database. 

State Number of observations 

H 1441 

M 1439 

Total 2880 

 

4.3.3. Building of a training and validation subset 

As a first step, a “knowledge” database is created with two types of input data: the net 

demand and the node voltages every quarter of an hour over a given time horizon. Supervised 

Machine Learning algorithms consist of two stages namely the learning and the testing stage.  

A part of input data with the corresponding output data ( class, labels ) from the knowledge 

database are stored in a subset, which is called training subset. A learning algorithm uses this 

set to adapt and set parameters of the applied ML technique in order to predict the right output 

(predicted states). 

The quality of the ML based classifier is assessed by its ability to generalize, i.e. its ability 

to correctly classify new examples that have not been used for learning. Then, the remaining 

observations from the original knowledge database are stored in another subset : the testing 

subset. During the testing stage, a prediction is made with those input data, the prediction error 

is calculated with all of these samples and then the accuracy of the parametrized ML algorithm 

can be assessed with these non-learned data (figure 55). 



 

81 
 

 Training subset 

ND1, ND2, Voltage 1, 

Voltage 2, State 

Classifier 
 

ND1, ND2, Voltage 1, 

Voltage 2 

Trained model 

Output y 

2016 training samples 864 testing samples 

Initialization of 

parameters 

Past data knowledge 

Prediction 
 

Learning 
 

Testing subset 

 
Figure 55: Flowchart of the classification process: from the model training to the implemented 

prediction. 

In practice, for selecting the observations in each data subset, a random logical selection is 

applied. Table 18 summarize the repartition of the data, which are used in each subset. 

Table 18: Partition of the data. 

Database Percentage Observations 

Knowledge database 100% 2880 

Training subset 70% 2016 

Test subset 30% 864 

 

Selected data in the training subset are very important because it is directly related to the 

value and quality of the presented knowledge that will be learned. The training subset has been 

built by using about half of samplings from each class (or state or label) in order to construct a 

balanced representation of the targeted classification function through these data (Table 19). 

 

Table 19: Distribution of the observations in each subset. 

Observations state Knowledge database Training subset Testing subset 

H 1441 1000 441 

M 1439 1016 423 

Total 2880 2016 864 

 

Figures 56 and 57 show the specified classification process for each implemented algorithm.  
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Figure 56: Classification process specified to Decision Tree (DT) and k-nearest neighbor 

(kNN) algorithms. 
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Figure 57: Classification process specified to Logistic regression (LR) algorithm. 

 

4.4. Graphical tools for result analysis and interpretation 

In order to analyze the obtained classification results from each ML technique, confusion 

matrix and Receiver Operating Characteristic (ROC) are proposed to represent and assess their 

performances.  

 

4.4.1. Confusion matrix: 2D representation 

The confusion matrix is an error/accuracy table that helps representing and visualizing the 

performance of any supervised learning algorithm. For a classification problem in two classes, 

the obtained results from the ML technique can be correct (true) or false in each class, the 

confusion matrix is then a 2D representation of results. As an example of a binary classification 

problem, we consider the prediction, for twenty persons, of pregnancy or not. The result of the 

test for each person will take one of this two values: positive (if the person is pregnant) and 
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negative (if the person is not pregnant). As for each test, the algorithm can give a correct or a 

wrong classification. The 2-D confusion matrix is obtained with the results of four evaluations 

(TP, FP, FN, TN) as presented in the table 20. 

TP means True Positive and that the algorithm predicted a positive result and it is true 

(correct). It also means that we predicted that twelve women are pregnant and she actually is. 

TN means True Negative and that the algorithm predicted a negative result and it is true  

(correct). It also means that we predicted that five men are not pregnant and he actually is not. 

FP means False Positive and that the algorithm predicted a positive result and it is false 

(wrong). It also means that we predicted that a man is pregnant but he actually is not. 

FN means False Negative and the algorithm predicted a negative test and it is false (wrong). 

It also means that we predicted that two women are not pregnant but they actually are. 

 

Table 20: Confusion matrix for two classes prediction. 

positive TP 

12 

 

FP 

1 

 

negative FN 

2 

 

TN 

5 

 

 positive negative 

 

For a classification problem in more classes, the size of the confusion matrix is increasing. 

As example, the 2D confusion matrix of a classification in four classes is shown in Figure 58. 

3453 observations are considered in the test database with a balanced sharing among class. 

Hence 864 observations from each class are representing the Target Class or Correct Class with 

true values.  

For the 3453 observations, the classification technique must retrieve the correct class. Each 

colon of the confusion matrix shows the obtained performance according to the class. As 

example, the 864 observations from the H class has been perfectly classed in class H (first 

colon). Among the 864 observations from the C class, only 476 has been perfectly classed in 

class C (colon 4), hence 55,1% are well classed (green percentage in the last line). By adding 

all observations in any colon, 864 classed observations are retrieved. 

When observations are badly classed, it is interesting to study and understand the miss-

classification. Each line of the confusion matrix analyzes and quantifies the confusion. As 

example (Figure 58), 1626 classed observations are in class A (second line) but only 864 are 

Target classes 

Output classes 
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correctly classed and corresponds to 53.1% of observations classed in class A. Bad classed 

observations in class A are shared in the two other classes B (10,9%) and C (11,2%). 

The diagonal cells correspond to observations that are correctly classified. The off-diagonal 

cells correspond to incorrectly classified observations. Both the number of classed observations 

and the percentage of the total number of classed observations are shown in each cell. As 

example (Figure 58), 489 observations from class B have been classed among the 3453 

observations of the test database. So, it represents 14,1% of well classed observations. Finally, 

from the whole test database, 77,9% of observations has been correctly classified and the source 

of well classified observations among classes is shown in the diagonal. 

 

     

Figure 58: Example of a confusion matrix for four-classes prediction. 

 

4.4.2. Confusion matrix: 3D representation 

The 3D confusion matrix is the representation of the previous 2D error matrix with the 

number of observations in the third axis (see Figure 59).  

Accuracy and mis-

classification rate :     

Percentage of observations 

correctly classed in green and 

incorrectly classified in red 

True positive rate and 

false negative rate :  

Percentages of examples 

belonging to each class 

that are correctly classified 

in green and incorrectly 
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Figure 59: Example of 3D confusion matrix. 

 

4.4.3. ROC diagram 

The ROC (Receiver Operating Characteristic) curve is the representation of the diagnosis 

ability of the classifier. Indeed, the true positive rate (TP ; the sensitivity) is plotted against the 

false positive (FP ; the probability of false alarm) for each algorithm. As shown in Figure 60, 

the more the classifier curve is above the diagonal line, the more its performance are good. On 

the other hand, more the classifier curve is under the diagonal line, more its performance are 

bad. 

 

Figure 60: Characteristics of the ROC diagram [101]. 

 

4.5. Application for a cable diagnosis 

4.5.1. Flowchart of the implemented ML approach 

The proposed framework includes each process in Figure 54 and the classification process 

(Figure 55). Therefore, we obtain the global flowchart of figure 61 (from the SM measurement 

to the prediction results). 
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Figure 61: Global flowchart of the implemented approach for the Machine Learning based 

ELV cable condition classifier. 

4.5.2. Analysis of the sensibility of node voltages against damage 

A first investigation is carried out in a healthy cable condition to calculate the RMS voltage 

at each node of the feeder (Figure 11). In this situation, the only cause of voltage variations are 

the Net Demand variations. The obtained values are limited to the [210 V, 242V] range as 

shown in Figure 62(a).  

Figure 62(b) presents the nodal voltages with the same ND but with a moderated degraded 

cable located in the line between nodes 2 and 3. It should be noted that the extreme degradation 

scenarios as studied in [36] have not been considered because these severe faults are easier to 

observe and to detect as voltage variations are usually outside the standard (+-10% 230V). The 

interest in our study is to detect the beginning of degradations very soon. This process will 

be useful in managing cable maintenance and in anticipating severe faults or outage. Hence, the 

moderately degraded cable condition is linked to a soft fault degradation, which will not induce 

necessarily breakage conditions but just introduces significant variations in the voltage profile. 

ML techniques will be explored to identify if the cause of voltage variations is due to the Net 

Demand or to a soft damage of the cable. 
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In the boxplots of nodal voltage profiles shown in Figure 62, the red positive signs 

demonstrate the outliers of the voltages in the created scenarios (the box includes the 75th to 

the 25th percentiles of the voltage profile). The outliers in Figure 62(a) are related to the 

prosumers ND demand variations while those in Figure 62(b) are due to the variation of the 

insulation conductance (1/Riso). As it can be understood, the increase in insulation conductance 

(1/Riso) leads to the voltage drops shown by the outliers.    

      
   (a)                                          (b) 

Figure 62: Boxplots of nodal voltages obtained by the Load Flow calculations: (a) for feeder 

in a healthy cable condition; (b) for feeder with a moderately damaged cable located in the 

line between nodes 2 and 3. 

4.5.3. Diagnosis of a single line 

4.5.3.1. Presentation of study cases 

The main purpose of this work is to identify if the monitored cable section (i.e., the one 

between nodes 2 and 3) is either in a healthy working condition (class H) or present any 

insulation wear (class M). This classification will be made by various ML methods by using an 

input dataset built from provided Smart Meter data and computed nodal voltages. The 

degradation of the cable is modeled by a thickness variation. The tested ML algorithms are 

expected to understand if any variation in the data is related to a cable degradation (based on 

the Net Demand / voltage level compromise) or to the customer Net Demand. In order to 

evaluate the importance of chosen data inputs, two cases will be considered and compared.  

In the study case 1, the Net Demand (ND) and the nodal Voltage (V) of the node 2 (named 

ND1 and V1) and node 3 (named ND2 and V2) are given as input data to the classification 

algorithm. 

In the study case 2, only the nodal Voltage (V) of node 2 (V1) and node 3 (V2) are given as 

inputs to the classifier. The idea is to evaluate if the tested ML algorithm can really distinguish 

the effects of thickness variation without the knowledge of the Net Demand variations. 

 

4.5.3.2.Obtained results 

Table 21 and  

      Table 22  show the prediction results obtained by the studied classification techniques 

for cases 1 and 2. 
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Table 21: Prediction results for study case 1 with different ML techniques (kNN: k-

Nearest Neighbors, DT : Decision tree, LR: Logistic Regression) 

Observations state Real state kNN DT LR 

H 433 468 434 447 

M 431 396 430 417 

Total 864 864 864 864 

 

      Table 22: Prediction results for study case 2 with different ML techniques (kNN: k-

Nearest Neighbors, DT : Decision tree, LR: Logistic Regression) 

Observations state  Real state kNN DT LR 

H  433 299 454 524 

M  431 565 410 340 

Total  864 864 864 864 

For the study case 2 (table 22) in which the Net Demand (DT) is not given in the inputs, it 

can be seen that the implemented algorithms are losing in performance. Therefore, it can be 

concluded that ND is an essential input for increasing the performances of the classifier by 

helping to distinguish overloading from cable ageing situations. This is due to its “not to be 

neglected” impact on the nodal voltage variation range [36].  

The constructed tree for DT method is shown in Figure 63 (corresponding to case 1). It 

reveals that normalized input ND1 profiles (named x1) will affect the prediction process as well 

as the normalized output voltage profile V2 (named x4). As a result, LR and DT lead to 

predictions with high accuracies in case 1. 

 

Figure 63: Constructed decision tree in case 1. 

Table 23 gives the related training and prediction accuracy for each studied classification 

method. By comparing these results, it can be concluded that the LR and Decision Tree are 

great binary classification tools while the kNN method leads to less accurate predictions. 
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Table 23: Training and prediction results accuracy for application case 1. 

Algorithms  Training error Prediction error (%) Accuracy (%) 

kNN  0.15427 23.264 76.736 

DT  0 0.116 99.884 

LR  0 2.083 97.917 

 

Figure 64 represents the 3-D confusion matrix of LR and DT methods for the first study case 

in order to visualize the quality of the classifiers output. The axis yPred and yvalid correspond 

respectively to the outputs of the classifier (the predictions) and the known cable conditions 

(real classes from the original dataset). Only few damaged cable conditions could not be 

predicted with either LR or DT algorithms (small blue block corresponding to 30 observations 

in Figure 64(a) and 4 observations in Figure 64(b)).   

    

       (a)                                                (b) 

Figure 64: Confusion matrix of the prediction result: logistic regression method (a) and 

decision tree method (b). 

 

Figure 65 shows the ROC (Receiver Operating Characteristic) diagram representation of the 

prediction, which shows the ratio between the true positive (sensitivity) and the false positive 

(specificity) outputs of the classifier. Knowing that the closer the curve is to 45-degree diagonal 

of the ROC space, the less accurate would be the prediction result, it can be conclude that kNN 

is clearly the least efficient algorithm in the studied application case. 
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Figure 65: ROC diagram of the prediction result for k-nearest neighbors (kNN), Decision 

Tree (DT) and Logistic regression (LR) methods. 

The obtained simulations with various degrees of insulation wear reveal an interesting 

information about the added value of data-driven approaches for cable condition assessment. 

Particularly, this work demonstrates the ability of different classification algorithms to identify, 

on the basis of only ND and voltage variation, the LV network cable condition assessment. 

However, this presented work should not be directly extended for other practical applications 

or be generalized for two reasons. Firstly, the resistance of the insulation material is calculated 

(in section 3) within consideration of some LV cable electrical properties specific to each 

manufacturer. Secondly, Machine Learning techniques have been developed here for the 

degradation detection in operating domains where the causes of observed variations are difficult 

to interpret. Hence to avoid a direct median separation in the observations, the input database 

has been built (in section 4.3.1) by excluding the cases of extreme degradations scenarios 

(severe faults) because they are easily detected without any advanced techniques. 

 

4.6.Conclusion 

ML based classification algorithms implemented in this research project are presented. 

Then, in the second part of the chapter, a Machine Learning-based framework to generate and 

organize data. A limited number of classification algorithms is then applied to identify a low 

voltage cable degradation due to the insulation material. From the probabilistic scenarios 

generation (for the uncertain nature and degree of the cable insulation degradation) to the 

probabilistic load flow calculations ;  the comparisons between the implemented classifiers 

show that logistic regression and decision tree approaches are powerful binary classification 

tools with 97.917% and 99.884% accuracy performance, respectively, while the k-nearest 

neighbors method could not provide accurate predictions.  

Despite the existing literature relating to fault detection in electrical networks, the main 

contribution of the presented study lies in its proposed methodology. Indeed, the proposed work 

is a novel approach, which lies in the use of data from already largely deployed Smart Meters. 
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This chapter reveals then the added value of data-driven approach for LV cable condition 

assessment. The two main contributions are: 

- The application of ML algorithms for monitoring of LV grids by using smart meter 

measurements and voltages calculated by a Power Flow algorithm 

- A proposal for practical deployment and utilization of ML algorithms 

This chapter paves the way to an effective and timely predictive maintenance of the LV 

distribution network avoiding expensive solutions for the Distribution System Operators 

(DSOs) as well as the customers.   To extend the study, the next chapter will be oriented towards 

the classification of all cables in a complete LV network, on the basis of a generalized data-

based early identification of electrical low voltage cable degradation due to insulation wear. 
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5.1.Introduction 

Electrical low voltage (LV) networks are the utilities of the electrical networks. Their 

voltage of 230V or 400V is used every day to power household appliances. This allows the 

distribution of electrical energy to households. Moreover, with the energy transition the LV 

grids are becoming more and more important beyond their public utility. The structure and 

voltage magnitude of LV grids are favoring to the connection of low power electrical equipment 

- such as electric vehicles (EV) and photovoltaic systems (PV). However, this does not 

guarantee their reliability of service. 

In fact, each low LV feeder is connected to a relatively low amount of customers and there 

exists as many LV grids as needed to serve all the local customers. Due to this low amount of 

customers served per feeder, the impact of an electricity interruption is low. Therefore, 

interruptions on the low LV level have not received much attention. However, all those low 

impact interruptions add up to high maintenance costs. It is then worth to investigate how to 

reduce these costs.  

Researches have focused on possibilities for visual diagnostics of LV grids based on 

physical degradation phenomena. However, diagnostics are not available yet on a large scale 

and visual inspection is impossible as LV components are generally located underground. Also 

with the ongoing energy revolution, historical network data are available on interruptions, assets 

and environmental factors.  

This chapter has the objective to investigate the use of smart metering devices data in order 

to make an assessment of the condition of LV distribution feeders. The focus is made on the 

problem of classification of all the LV cables - at the same computing time - in a complete LV 

network. This process is made on the basis of a generalized data-based identification of 

electrical low voltage cable degradations due to insulation wear.  

While the previous chapter was related to a binary classification problem (two classes), this 

chapter addresses a multi-classes classification model to solve. After presenting the studied 

electrical networks and the framework for data analysis, various ML techniques are applied. To 

explore  performances of ML techniques, results are compared according to the severity of line 

degradations. An impact analysis of the production connection is also explored on obtained 

performances.  Finally, general conclusions and recommendations are drawn. 

 

5.2. Machine Learning techniques for LV Cable condition classification 

5.2.1. Problem and task  

The objective of this work is to study the scalability of the developed Machine Learning 

techniques for an entire distribution network. The issue is to explore and develop a ML method 

as generic as possible what else the topology and size of Low Voltage distribution networks.  

The study starts by considering a sending point with several customers ; ten customers in 

this application case. Then, the output vector is extended in order to be able to obtain for each 

cable, a binary output of the type “healthy/degraded”. The state of each cable, which connects 

two clients in the feeder, is considered in this chapter as a binary variable to be identified. 

Therefore, we will end up with as many output variables as there are sections of cable in the 

network.  
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The main difficulty is that each client node variations has a significant impact on the other 

nodes (in the same network). In consequence, a damping of voltage anomalies is usually 

observed in all the nodes that are located before the node where the anomaly occurs. The idea 

is to see if those impacts affect the decision accuracy and the calculation speed and how. This 

is a main issue to a possible extension toward an online application to monitor in real time 

and/or trigger protections. It would be then interesting to compare the studied classifiers in 

chapter 4 with as inputs the measurements available only from the meters (the powers 

consumed, injected, produced).  

 

5.2.2. Electrical network overview and new resulting labels 

The Figure 66 shows the generic ten nodes distribution network with the associated lengths 

(between each node), that are considered from figure 11. 6kVA customers are connected at each 

node. This network will serve as a basic study case to evaluate and compare the constructed 

classifiers and the computation results. 

 

 

Figure 66: Generic topology of the considered 10-nodes LV distribution network. 

For the evaluation of each cable state in a feeder, two classes are defined and are applied to 

each observation in the database (see Table 16). For the evaluation of a network (as represented 

in Figure 66), as many classes as lines in the feeder are defined to consider all cable states. Each 

label from A to J is associated to the presence of a degradation state in the associated line (table 

24). The class H is associated with a complete healthy feeder; no insulation wear in none of the 

cables.  

Table 24: Label table for the observations. 

Cable state Labels 

No insulation wear H 

Insulation wear between node 2 and 3 A 

Insulation wear between node 3 and 4 B 

Insulation wear between node 4 and 5 C 

Insulation wear between node 5 and 6 D 

Insulation wear between node 6 and 7 E 

Insulation wear between node 7 and 8 F 

Insulation wear between node 8 and 9 G 

Insulation wear between node 9 and 10 I 

Insulation wear between node 10 and 11 J 
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5.2.3. Method of analysis 

The method of chapter four is extended for a network. It consists in generating a data base 

of measurements representing the operation modes of the electrical network, then, these data 

are learned to parametrize each considered machine learning technique. Finally, ML techniques 

are applied to the unknown database and obtained classifications are studied. 

The working database (so-called “knowledge” database) in this chapter, is created with the 

voltage values and Net Demand values at each node of the considered LV distribution network. 

The Net Demand (ND) data are obtained with SM measurements at each quarter of an hour (q), 

the PV production PVi  and the Load demand Loadi at each node i, as expressed in equation 

(4.1). As stated previously, the voltage values at each node is depending of the state of lines’s 

health. So, a database must be created to handle various damage conditions in the network in 

order to test the efficiency of various ML techniques for their detection. To generate this new 

database, each damage condition for each cable line, is considered separately by a radius 

variation. Thickness scenarios are used to represent these radius variations (according 

environmental conditions and among seasons). Each scenario is associated to a random 

sampling of cdf (as presented in chapter 3, section 3.4). Then, the variable values of the cable 

impedances are calculated. This impedance uncertainty and variability are propagated onto 

node AC voltages that are calculated by using the Newton-Raphson load flow (NRLF) 

technique (as explained in section 3.4.3) and measured data (each quarter q of each day) as 

presented in Figure 53. 

Supervised Machine Learning algorithms consist of two stages namely the learning and the 

testing stage with data.  

During the training, input data with the correct output classes are required. A learning 

algorithm uses this set to adapt and set parameters of the applied ML technique, and to create 

the right output (predicted states). A part of input data with the corresponding known output 

data ( class, labels ) from the knowledge database are stored in a subset, which is called training 

subset. For our presented results, the training dataset comprises 8064 observations. 

The quality of the ML based classifier is assessed by its ability to generalize, i.e. its ability 

to correctly classify new examples that have not been used for learning. Then, the remaining 

observations from the original knowledge database are stored in another subset: the testing 

subset. For our presented results, the testing dataset comprises 3456 observations. During the 

testing stage, a prediction is made with those new input data, the prediction error is calculated 

with all of these samples and then the accuracy of the parametrized ML algorithm can be 

assessed with these non-learned data (Figure 55). 

 

5.2.4. Summary of the considered Machine Learning methods 

For the comparative study, all the ML algorithms presented in section 4.2 will be 

experimented with the application network. To do so, the below section is a brief summary of 

each algorithm specification. 
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- k-nearest neighbors  (kNN)  

Each new observation is compared to existed ones by 

using a distance calculation and a number of nearest 

neighbors. This method is mostly used for fault detection and 

classification but also for power quality classification.  

 

 

- Decision Tree (DT) 

Recursive process, going from the properties (as seen in the 

branches) to the conclusions about an observation (as seen in 

the leaves). This method is used for Preventive and corrective 

control, for power systems security assessment. 

 

 

 

 

 

- Logistic regression (LR)  

LR predict the probability ℎ𝜃(𝑥) of a new 

observation x to be classified into a given class y. 

This method is used for electricity monitoring, 

visualization and prediction, fault detection in 

renewable energy production.  

 

 

 

- Multiclass support vector machine (SVM)  

SVM is a full, trained, multiclass model using 

binary one-versus-all support vector machine (SVM) 

method. Robust prediction methods being based on 

statistical learning frameworks. This method is mostly 

used for smart grid condition monitoring, identification 

of miscellaneous electric loads, micro-grids protection.  
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- Random Forest (RF)  

Very powerful ensembling machine learning 

algorithm which works by creating multiple decision 

trees and then combining the output generated by each 

of the decision trees. This method is used for smart 

pricing, classification of electrical grid stability, 

prediction of power consumption.  

 

 

 

5.3. Performance analysis of ML techniques according the line degradation severity 

5.3.1. Followed exploring method with only consumers  

A sending point with several consumers is considered and so different power demands 

according the time. These observations are obtained by sampling the CDF of the load demand 

(as modelled from measurements in part 4.5.2.3). As example, the figure below presents the 

considered load demand at node 6 and 11 during one day.  

 
Figure 67: Load demand a) at node 6 and  b) at node 11. 

Under various degradations in various lines, the purpose is to implement and compare 

different ML techniques to identify the state of each cable. It should be noted that the extreme 

degradation scenarios as studied in [36] have not been considered because the computations are 

associated to light degradation conditions. Two situations will be studied. First, a light 

degradation of lines is implemented by considering a high domain variation of the random 

sampling [0.7 ; 1] onto the CDF of the line resistance (Figure 28) to create light variations of 

the impedance. Then, medium degradations will be considered by another sampling domain 

[0.7 ; 0.4]. 
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5.3.2. Comparative study of results under light and medium degradations 

The presented results show the boxplots of nodal voltages obtained by the Load Flow 

calculations with consumers. Figure 68(a) is related to the feeder under light degradations while 

Figure 68(a) is related to the feeder under medium degradations. As expected, the increase in 

the insulation conductance (1/Riso) leads to voltage drops. For each figure, the blue box 

includes the 75th to the 25th percentiles of the voltage profile. The red positive signs highlight 

the outliers of the voltages in the created scenarios (outside the percentile box). Under light 

degradations, average values of the different node voltages are limited to the [226 V, 230 V] 

range where as under medium degradations, the variation domain is increasing to [182 V, 230 

V] out of the standard minimum magnitude. 

      
   (a)                                          (b) 

Figure 68: Boxplots of nodal voltages under: (a) light degradations; (b) medium degradations. 

To compare performances of the different machine learning technologies, kNN, DT, SVM 

and LR methods, all obtained 2-D confusion matrixes are given in the following figures. 

  

   (a)                                          (b) 

Figure 69: kNN classification results under: (a) light degradations; (b) medium degradations. 



 

99 
 

   

   (a)                                          (b) 

Figure 70: DT classification results under: (a) light degradations; (b) medium degradations. 

 

  

   (a)                                          (b) 

Figure 71: SVM classification results under: (a) light degradations; (b) medium degradations. 
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   (a)                                          (b) 

Figure 72: LR classification results under: (a) light degradations; (b) medium degradations. 

The testing dataset handles 3456 observations comprising only 346 observations in a healthy 

state. So, a first challenge of data mining is to detect this healthy state (10% of the observations). 

A second one will be to identify and locate the degraded line (9 possible states).  

Comment 1: For detecting a H state (first colon), LR, Tree and kNN have good performances 

(>90% as shown in first column of last line for the case H) as shown on figure 69(a), 70(a) and 

72(a) under light degradations. When the degradation are stronger, all ML techniques detects 

very well this state (100%). 

Comment 2: For identifying the location of the degraded electrical line, it is difficult to 

identify a better ML technique. As example, under light degradations, the SVM technique 

(figure 71) has the best performances with 54,2% (last colon). But when medium degradations 

are considered, performances are decreased because of bad results regarding states E (44,8%) 

and I (24.6%). Under medium degradations, the found best technique is LR with a global 90,9% 

performance. 

Comment 3: What else the ML technique, some degraded lines are harder to detect and 

decrease the obtained general performance. Hence, it seems that more observations should be 

provided regarding these conditions during the training phase. We recall that equal number of 

observations for each state have been used in the learning phase for presented results here. In 

fact, performances of each ML technique could be improved by enriching the learning data base 

with more data corresponding to operation conditions that are difficult to detect after this first 

test. This enhancement has not been applied in our work because it is scientifically questionable 

to compare ML techniques using different learning databases for each one. Anyway this 

specialization learning can easily been applied for an engineering application. 

It can be conclude that medium degradation are easier to detect by ML techniques. Light 

degradation conditions are difficult to assess due to the low gap between the voltage profile 

while they are remaining no critical for the operation of the electrical network. 
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5.4.Impact of PV generation onto performances of ML techniques 

5.4.1. Followed exploring method with a PV production 

As previously, a departure with several consumers is considered and so different power 

demands according the time. But now, we are going to consider a PV production at a node 

whose time profile is obtained  by sampling the cdf of the PV production (as modelled from 

measurements in part 4.5.2.3). As consumption is also present, the Net Load Demand is 

calculated (as explained in part 2.3). As example, the figure below presents the obtained Net 

Load Demand at node 6 and 11 during one day.  

 
Figure 73: Load demand at a) node 6 and (b) node 11. 

The purpose of this study is firstly to highlight the impact of a PV generation onto ML 

performances. The presented results are related to medium degradations of lines. Secondly, the 

impact of the location of this PV production into the network is explored. 

 

5.4.2. Comparative study of results for PV connection at the terminal node and node 6 

The boxplots of nodal voltages obtained by the Load Flow calculations are presented on. 

Figure 74(a) with PV penetration on the node 6 while Figure 74(b) is related to the feeder with 

PV penetration at the last node, named node 11. For each figure, the blue box includes the 75th 

to the 25th percentiles of the voltage profile (see Appendix D for the comparative study of the 

performances without and with PV penetration under medium degradation).  
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      (a)                                          (b) 

Figure 74: Boxplots of nodal voltages with a PV production at: (a) the node 6 ; (b) the last 

node named node 11. 

 

For either consumers or prosumers, the red positive signs highlight the outliers of the 

voltages in the created scenarios (outside the percentile box). Average values of the different 

node voltages (red bars) are in the domain limited to the [178 V, 230 V] range with a PV 

production connected at the last node; whereas when connected at the last node, the variation 

domain is increasing to [182 V, 230 V]. We retrieved a well-known result as the connection of 

a production at the end of a network improve the RMS voltage over the all network. 

In order to compare performances of the different machine learning technologies, kNN, DT, 

SVM and LR methods, all obtained 2-D confusion matrixes are given in the following figures. 

  
   (a)                                          (b) 

Figure 75: kNN classification results with a PV production at: (a) the node 6 ; (b) the last 

node named node 11. 
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   (a)                                          (b) 

Figure 76: DT classification results with a PV production at: (a) the node 6 ; (b) the last node 

named node 11. 
 

 

   
   (a)                                          (b) 

Figure 77: SVM classification results with a PV production at: (a) the node 6 ; (b) the last 

node named node 11. 
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   (a)                                          (b) 

Figure 78: LR classification results with a PV production at: (a) the node 6 ; (b) the last node 

named node 11. 

Comment 1: A first observed tendency by comparing the same situation but without 

production (figure 69(b), 70(b), 71(b), 72(b)) is that when PV generation is connected, the 

performances of ML techniques are less. It can be explained because the electricity production 

has a tendency to increase the voltage and so to hide the voltage droop due of the degraded line 

(increase of the impedance). 

Comment 2: Performances are better for a connection location at the end of the electrical 

network 

Comment 3: Excepted for the SVM, again the healthy state is easily detected and classed 

(first colon) 

Comment 4: For the detection of damaged lines, the SVM technique has the best results. 

But, it must be noted that the state F is badly detected (13,3%). Again, it seems that more 

observation should be provided regarded these conditions during the training phase (we recall 

that equal number of observations for each state have been used in the learning phase for 

presented results here). 

 

5.5. Discussion and Conclusion 

The chapter 5 of this manuscript focuses on how to develop a Machine Learning technique 

as generic as possible in order to make it applicable to a full Low Voltage distribution feeder. 

We therefore start by considering a feeder with several customers (a ten nodes network with 

different nodal length). Then, the output space is extend to englobe as many label as existing 

cables (line between two nodes). So where as from the classification process of chapter 4 was 

binary (two classes), now this chapter five addresses a multi-classes classification model to 

solve. Classification algorithms implemented in this research project are presented. Then, in the 
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second part of the chapter, a Machine Learning-based framework to generate and organize data. 

A limited number of classification algorithms is then applied to identify a low voltage cable 

degradation due to the insulation material.  

From the probabilistic scenarios generation (for the uncertain nature and degree of the cable 

insulation degradation) to the probabilistic load flow calculations ;  the comparisons between 

the implemented classifiers show that the output accuracy can increase form 15.6% to 67.6% ; 

depending on the degree of line’s degradation or the PV impacts.  

The obtained results shown that the feeder with only consumers give the better classification 

accuracy. This can be explained by the structure of the knowledge database of this application, 

which makes easier the separation between the observations associated with the different 

classes. More the PV plants are far from the first node, more the nodal voltage profile is variable 

; so the PV impact can clearly be analysed. 

From previous comments about obtained performances in detection, we extract some 

conclusions. 

-  Tree and LR techniques are recommended to detect an H state (with or without PV 

production).  

- The k-nearest neighbours method (k=5) still remaining the technique providing less accurate 

predictions.  

- As when PV generation is connected, the performances of ML techniques are less, a 

recommendation would be then to add more input data to the ML techniques as the load demand 

with the Net Demand at prosumer nodes. 

- To improve the learning for badly classed states, it could be interesting to consider more 

observations coming from degraded lines that are related to these states during a second learning 

stage in order to improve performances of classifiers thanks to more supplied knowledge from 

these difficult states.  

- The final recommendation would be to use at least two ML techniques: one will be specialized 

(learned with adapted data) for detecting the H state as Tree or LR and, in case of degraded 

lines, the SVM technique to identify the degraded line.  

     The above approach shows the added value of data-driven with ML techniques for LV feeder 

condition assessment as well as for PV penetration impacts on existing LV feeder.  
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1. Concluding comments 

In this research project, statistical data from SM and the daily power flow measurement have 

been used for investigating adaptive models of the LV network under variations of temperature 

and line degradations. 

Firstly, a probabilistic Load Flow algorithm has been developed for radial LV network 

within consideration of the system resistance distribution as an uncertain parameter depending 

on the temperature. The Load demand and the PV production generally used in classical Load 

Flow (LF) calculations are computed by using Smart Meter data with a quarter of an hour 

resolution time. To take into account uncertainties into the network operation, either the 

resistance value or the network to customer exchanged power are randomly selected at each 

iteration by using Monte Carlo (MC) methods. Both annual and seasonal dependencies of the 

line resistance have been implemented. The simulation results have shown that integrating the 

resistance distribution in a seasonal probabilistic tool can affect the collected reliability indices 

up to 10.4% depending on the season.  

Secondly, the conductance variations of the LV cable insulation, due to the insulating 

material degradation, have been analysed within its impact on the nodal voltages. To this end, 

a probabilistic framework has been proposed based on the MC simulations and LF calculations. 

The MC simulations are used here to characterize the insulation degradation through scenarios 

and to model the resistance variation. LF calculations are conducted in order to calculate the 

nodal voltages. Simulation results reveal some voltage drops over 50% depending on the 

location and level of the cable insulation degradation as well as on the network working 

conditions.  

Finally, a Machine Learning-based framework is proposed for the identification of cable 

degradation due to the insulation material wear. To this end, a probabilistic tool is firstly 

developed to generate scenarios including the uncertain nature and level of the cable insulation 

degradation. Those scenarios are then associated with the load demand and PV generation 

variations and used to build the nodal voltage database by performing probabilistic load flow 

calculations. Different supervised learning methods are finally applied to the generated 

database. In the first (training) stage, the studied ML based classification methods learn from 

the given inputs, its associated cable condition status in order to be able to predict it, in the 

second (test) phase with (new) given network operating points. The comparisons between the 

implemented classifiers show that Logistic Regression and Decision Tree approaches are 

powerful binary classification tools with respectively a 97.92% and 99.88% accuracy 

performance while k-nearest neighbors method could not provide accurate predictions. The 

conducted study reveals the benefit of such a data-driven approach for the cable condition 

assessment.   

 

2. Overview of performed research works 

This PhD manuscript has explored scientific approaches for the modeling of low voltage 

electrical networks with an interest for identifying their state of physical degradation. The main 

objective was to address the upgrading of LV network modelling and the cable condition 

assessment through the exploitation of data provided by Smart Metering devices (SM) installed 

at homes. The large-scale deployment of SM helps to increase the observability of the electrical 
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network state of health. This large database is, for electrical engineering, an opportunity to 

create new adaptive modelling techniques/tools for those initially poorly metered networks.  

The designed and implemented algorithms enable a various field of applications ranging from 

temperature based modelling and the impact analysis of line impedance variations. In this work, 

some frameworks  have been set up by applying Monte Carlo (MC) simulations and ML 

techniques onto energy data  at end-users scale. Thereby, the main contributions are:  

- In chapter 2, the modelling of an unknown electrical network architecture with SM data, 

and the impact analysis of temperature variations onto voltage variations and so 

operation security, 

- In chapter 3, the characterization and impact analysis of the cable insulation 

degradations on LV network voltages, 

- In chapter 4, the application and comparison of various Machine Learning (ML) 

techniques for the condition assessment of a single LV cable with smart meter data, 

- In chapter 5, the extension of above techniques for the condition assessment of a LV 

electrical network with an exploring study about the PV production impact onto the 

accuracy of degradation detection. 

For low voltage distribution networks, issues of these works can help the maintaining, 

drastically enlarge the hosting capacity and enable the cost-effective planning of reinforcement 

upgrades by identifying weak parts of the network. 

 

3. Guidelines for the LV distribution system operators  
This section presents an open letter to the DSO to guide them in the applied development of 

the presented above prospective ML techniques.  

 

Need to measure the RMS voltage variations at transformer and SM 

The various studies investigated in this project have highlighted the need to measure voltage 

variations along the feeder. Communication of voltage measurements was not mandatory in 

installed smart meters. As presented in this manuscript, voltages can be estimated by executing 

a Power Flow algorithm with power measurements. However, voltage measurements will make 

possible the reduction of calculation errors. Moreover, the accuracy of voltage measurements 

is essential, as it is an essential input data of ML techniques for degradation detection and 

location. 

 

Integration of the insulation resistance in network models for a load flow calculation 

The chapter 3 of this document has focused on how to characterize the cable insulation 

degradations as a variable resistance named Riso. For upgrading the model of the LV distribution 

network, the above resistance model can be incorporated in the model of the line. Therefore, 

this variable resistance (more precisely the combination of Riso and a ground resistance Rg) 

should be considered as a shunt variable resistance, between the leakage point and the ground. 

The Load Flow calculation could then be more realistic and closed to the real cable conditions 

of the LV feeder. The modelling of the insulation degradation makes the preventive maintenance 
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more effective and more accurate to prevent sudden breakdowns on the network and the 

enormous associated financial losses.  

 

Use of thermal models based power flow calculation for prognostic and on line monitoring 

Climate change is expected to raise the global temperature by 2.6°C, on average and in a 

rather optimistic scenario. As detailed in chapter 2, the thermal exchange with the environment 

and hence by weather conditions is influencing the temperature of the electrical line.  Physical 

parameters should not be considered as static and an extension of their variation range should 

be considered. Dynamic thermal modelling of the power system infrastructure, SM data and 

power flow calculation can be exploited for a prognostic of operating conditions and for 

controlling the varying capability of connected distributed energy resources (PV curtailment, 

load shedding, …) in order to reduce power transfer if necessary. 

 

4. Limitations and future works 

The final interest of these works is to set up a tool, which can assist the Distribution System 

Operators (DSOs) in an effective and timely predictive maintenance of the LV distribution 

network avoiding the costly solutions. Indeed, the obtained result offer promising perspectives 

for the early detection of cable degradations by combining ML approaches, Load demands 

profiles and Smart Meter (SM) measurements.  

The current study is an exploratory study of SM database and a first step towards a global 

and generalized data-based early detection of electrical Low Voltage cable degradations due to 

the insulation wear, by using Machine Learning tools.  

The implemented frameworks, during this project, aim to serve as tools for a future 

monitoring, diagnostic and prognostic of Low Voltage networks with the advantage of better 

managing the latter (e.g. by detecting failures before they become costly, by improving 

probabilistic load flows used for techno-economic analysis, by increasing the robustness of the 

voltage control algorithms…). The targeted applications is hoped to significantly improve the 

reliability, safety and availability of LV distribution systems. 

The obtained results offer promising perspectives for the early detection of cable 

degradations by combining ML approaches, Load demands profiles and Smart Meter (SM) 

measurements. However, the work done in this manuscript has some limitations like any 

research works. Beyond the main contributions of this thesis, some relevant further 

developments could be explored for more and for better performance and generalization of the 

implemented tools. The following lines present some perspectives to this work. 

The first one is about the condition assessment for any LV feeder. Indeed, this research could 

be extended to large LV feeders with multiple ramification based on a Cross Nodal Learning 

that will enable the learning between the models of each line section or cables in the network. 

Moreover, an Ensemble learning process using multiple learning algorithms to get better 

predictions can be set up for this global application; as example bagging, boosting and random 

forests method belong to the same learning method family. 

The second one is about the effectiveness and relevant of the SM data by using voltage 

measurements rather than estimations from power flow calculations. The database can be 
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complete with transformer voltage and nodal voltage variation measurement in order to 

improve their availability, quality and accuracy. The above results have shown that quality data 

lead to a better knowledge database and moreover to a better degradation detection. 

The third one can be the addition of new inputs as the type of cable, the PV production, … 

It is a research track to improve the accuracy of ML classifiers by providing adequate and 

complementary knowledge through more pertinent data inputs.  

The fourth one can be about overcoming the limits of Machine Learning applications on 

detection of cable degradation. The conclusion of chapter 5 shows that in case of light 

degradations, it is difficult to distinguish between the class H and other classes. So, some new 

complementary inputs features can be added to the knowledge database. 
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Appendix A :  

Technical Parameters of the Low Voltage (LV) distribution network 

 

Table A: Technical parameter of the LV distribution network. 

Line between : Length (in m) R (Ohms/m) X (Ohms/m) 

Node 1 and Node 2 46 206 310 

Node 2 and Node 3 273 310 243 

Node 3 and Node 4 62 310 243 

Node 4 and Node 5 63 310 243 

Node 5 and Node 6 194 310 243 

Node 6 and Node 7 26 310 243 

Node 7 and Node 8 11 310 243 

Node 8 and Node 9 25 310 243 

Node 9 and Node 10 21 310 243 

Node 10 and Node 11 44 310 243 

Node 11 and Node 12 10 310 243 

Node 12 and Node 13 15 310 243 

Node 13 and Node 14 14 310 243 

Node 14 and Node 15 41 310 243 

Node 5 and Node 16 396 310 243 

Node 16 and Node 17 93 310 243 

Node 17 and Node 18 117 310 243 

Node 7 and Node 19 119 310 243 
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Appendix B :  

Measured extreme temperatures during the 2022 heat waves 

 

In 2022, high temperatures have been measured earlier in the year (before the summer) and 

in unexpected regions; as example on 18th June, not in the South of France (as usually until 

now) but on the West side (figure B1).   

 

Figure B1: Measured maximal temperatures on June 18 th, 2022 (© 

https://www.meteociel.fr/observations-meteo/tmaxi.php) 

 

One month after, high temperatures reappear and again in the North of Europe; as on 19th 

July (figure B2). 
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Figure B2: Measured maximal temperatures on July 19th,  2022 

(©https://www.meteociel.fr/observations-meteo/tmaxi.php) 
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Appendix C :  

Building and plotting a Cumulative Distribution Function (CDF) 
 

This appendix explains how to construct a CDF profile from a known database. By 

definition, a Cumulative Distribution Function (CDF) is function F that represents the 

probability that a value X randomly sampled from a population, and evaluated at x, is equal to 

or less than x (mathematically P[X ≤ x]).  

 

Let remember first, the properties inherent to the CDF :  

• Every CDF is non-decreasing 

• Considering that the CDF maximum value is at x, F(x) = 1. 

• The CDF ranges is from 0 to 1. 

• P[X = x]) = 0. 

On other hand, CDF is used to evaluate the accumulated probability of the known database 

(also assimilated to the area under the curve to the left from a point of interest). 

 

Example 1 : Uniform distribution 

 

Figure C1: Representation of uniform distribution. 

The shape of the distribution is described by the function f(x) below : 

𝑓(𝑥) =  
1

𝑏−𝑎
      for a<x<b 

 

Let consider a point of interest x as show in Figure C2. We are trying to figure out the CDF 

i.e. the area of the surface in dark.  
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Figure C2: Representation of the point of interest x. 

 

      Knowing that the area of a rectangle is : 

𝐴𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 = 𝐵𝑎𝑠𝑒 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 

𝐴𝑑𝑎𝑟𝑘 = (𝑥 − 𝑎) ∗ (𝑓(𝑥)) 

 

      So, for a random value X, the Cumulative Distribution Function (CDF) will be 

mathematically expressed as :  

𝑃[𝑋 ≤  𝑥] =
𝑥 − 𝑎

𝑏 − 𝑎
 

 

Finally, P[X ≤ x] calculated for the entire interval [a; b] will be represented as Figure C3. 

          CDF     

Figure C3: Representation of the CDF of a uniform distribution. 
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Example 2 : Exponential distribution 

 

Figure C4: Representation of exponential distribution. 

 

The shape of the distribution is described by the function f(x) below : 

𝑓(𝑥) =  λ 𝑒−λx     

      Let consider a point of interest x as show in Figure C4. We are trying to figure out the CDF 

i.e. the area in dark.  

 

Figure C5: Representation of the point of interest x. 

     For a random value X, the Cumulative Distribution Function (CDF) will be mathematically 

expressed as :  

𝑃[𝑋 ≤  𝑥] = 1 − 𝑒−λx 

 

     Finally, P[X ≤ x] calculated for the entire interval [0 ; 10] will be represented as Figure C3. 
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          CDF     

Figure C6: Representation of the CDF of an exponential distribution (© 

https://www.alphacodingskills.com/scipy/scipy-exponential-distribution.php). 

 

Example 3 : Normal distribution 

Let consider the normal distribution of Figure C7 represented by its Probability Distribution 

function (PDF) and the associated CDF calculated based on the above examples. 

 

Figure C7: Representation of the CDF of a normal distribution (© 

https://dwaincsql.com/2015/05/14/excel-in-t-sql-part-2-the-normal-distribution-norm-dist-

density-functions/). 

 

So, the shape of the distribution (i.e. the PDF) is described by the function f(x) below : 
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𝑓(𝑥) =
1

√2𝜋 ∗ 𝜎2
∗ 𝑒−

1
2

∗(
𝑥−𝜇

𝜎
)

2

    

where µ and σ are respectively the mean and the standard deviation of the dataset.  

µ =
1

𝑁𝑡𝑜𝑡𝑎𝑙
∑ 𝑥𝑖𝑡

𝑁𝑡𝑜𝑡𝑎𝑙

𝑖𝑡=1

  𝑎𝑛𝑑  𝜎 = √
1

𝑁𝑡𝑜𝑡𝑎𝑙
∑ (𝑥𝑖𝑡 − µ)2

𝑁𝑡𝑜𝑡𝑎𝑙

𝑖𝑡=1

 

      Then the CDF of a point of interest x is mathematically expressed by :  

𝑃[𝑋 ≤  𝑥] = ∫ (
1

√2𝜋
𝑒−

𝑥2

2 ) 
𝑥

−∞

 

Finally, P[X ≤ x] calculated for the entire interval, has been built by the red curve of Figure C7. 

The Figure C7 also show that half of the distribution is accumulated by the time that we 

get to point B=10. 

 

Application in studied cases 

Regarding the database of this study (see section 2.5.2.2), the Figure C9 below has been 

constructed, from the database of Figure C8, to show the CDF of the line resistance for each 

season in one year.   

 

Figure C8: Seasonal profile of the line resistance. 
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By taking into account the temperature variation over one year, the Figure C8 shows the 

seasonal resistance distribution model expressed with the temperature and the electrical 

conductor resistivity.  

So, the shape of each graph (named above f(x)) is built as: 

 

 

where the parameter (x - To) is the temperature variation between the external temperature x (i.e. 

Tt in equation (2.15)) and the steady state temperature To.  

 

 

 

 

Figure C9: Seasonal CDF of the line resistance during each season. 

 

  

𝑓(𝑥) =  [𝜌𝑜 ∗ (1 + 𝛼𝑜 ∗ (𝑥 −  𝑇𝑜))] ∗
1

𝑆 ∗ 103
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Appendix D :  

Comparison of performances without and with PV penetration under medium 

degradation 
 

1. Study of the terminal node  

 
      

   (a)                                          (b) 

Figure D1: Boxplots of nodal voltages obtained by the Load Flow calculations: (a) for feeder 

with consumers only ; (b) for feeder with PV penetration on last node named node 10. 

The consecutive figures below represents the 2-D confusion matrix, for both application 

cases, of kNN, DT, SVM and LR methods. The axis TargetClass and OutputClass correspond 

respectively to the known cable conditions (real classes from the original dataset) and to the 

outputs of the classifier (the predictions).  

  
   (a)                                          (b) 

Figure D2: kNN classification results : (a) for feeder with consumers only ; (b) for feeder with 

PV penetration on last node named node 10. 
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   (a)                                          (b) 

Figure D3: DT classification results : (a) for feeder with consumers only ; (b) for feeder with 

PV penetration on last node named node 10. 

 

  

   
   (a)                                          (b) 

Figure D4: SVM classification results : (a) for feeder with consumers only ; (b) for feeder 

with PV penetration on last node named node 10. 
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   (a)                                          (b) 

Figure D5: SVM classification results : (a) for feeder with consumers only ; (b) for feeder 

with PV penetration on last node named node 

 

 

2. Study of the node 6 

     

   (a)                                          (b) 

Figure D6: Boxplots of nodal voltages obtained by the Load Flow calculations: (a) for feeder 

with consumers only ; (b) for feeder with PV penetration on middle node named node 6. 

The consecutive figures below represents the 2-D confusion matrix, for both application 

cases, of kNN, DT, SVM and LR methods. The axis TargetClass and OutputClass correspond 

respectively to the known cable conditions (real classes from the original dataset) and to the 

outputs of the classifier (the predictions).  
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   (a)                                          (b) 

Figure D7: kNN classification results : (a) for feeder with consumers only ; (b) for feeder with 

PV penetration on middle node named node 6. 

 

 

   

   (a)                                          (b) 

Figure D8: DT classification results : (a) for feeder with consumers only ; (b) for feeder with 

PV penetration on middle node named node 6. 
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   (a)                                          (b) 

Figure D9: SVM classification results : (a) for feeder with consumers only ; (b) for feeder 

with PV penetration on middle node named node 6. 

 

  

   (a)                                          (b) 

Figure D10: LR classification results : (a) for feeder with consumers only ; (b) for feeder with 

PV penetration on middle node named node 6. 
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Titre en français : 

Modélisation des réseaux électriques de basse tension à partir d'une grande masse de données : 

applications de méthodes d'apprentissage automatique pour la surveillance du réseau dans des 

conditions atmosphériques variables et de vieillissement" 

Résumé 

Cette thèse explore des applications potentielles des données énergétiques mesurées par les 

compteurs communiquant des réseaux électriques de basse tension (BT). A partir de ces données, un 

algorithme heuristique permet de proposer une architecture équivalente du réseau électrique et 

d’identifier ses impédances par une minimisation optimale des erreurs de modélisation. Le modèle 

obtenu est utilisé pour étudier l’impact de la variation et de l’augmentation de la température ambiante 

sur le fonctionnement du réseau électrique. Les variations de la demande des charges électriques, des 

générateurs PV, de la température ambiante augmentent le courant de fuite à travers l'isolation du câble 

et accélère le vieillissement de l’infrastructure. Des analyses d'impacts sont menées pour caractériser et 

modéliser la dégradation de l'isolation des câbles en se basant uniquement sur les données issues des 

compteurs « intelligents ». Etant donné que des modèles mathématiques satisfaisants basés sur la 

physique ne sont pas développables, plusieurs méthodes d'apprentissage automatique supervisé sont 

appliquées pour évaluer l'état de dégradation des câbles. Des cas d’études sont analysés pour comparer 

la précision des méthodes d’apprentissage pour différent scenarii de dégradations.  Les outils proposés 

offrent des perspectives prometteuses pour l'identification précoce des défauts dans les câbles BT en 

utilisant des mesures issues des compteurs combinés à des approches d’apprentissage et des calculs de 

flux de puissances utilisant des simulations de scénarios de Monte Carlo pour calculer les tensions. 

Mots clés : Réseaux de distribution basse tension; ; Méthodes d'apprentissage automatique supervisées; 

dégradation de l'état du câble; calcul des flux de puissance; compteurs communicant, scénarios de Monte 

Carlo; usure du matériau isolant des câbles; évaluation de l'état des câbles. 

 

Titre en anglais : 

Data-based investigations of Low Voltage Distribution Systems: 

Machine Learning Applications for the monitoring of the network under ageing and variable 

atmospheric conditions 

Abstract 

This thesis explores potential applications of energy data measured by smart meters in low voltage 

(LV) electrical networks. From these data, a heuristic algorithm makes it possible to propose an 

equivalent architecture of the network and to identify its impedances by an optimal minimization of 

modeling errors. The model obtained is used to study the impact of the variations and increase of the 

ambient temperature on the operation of the electrical network. Variations from load demands, PV 

generations, the ambient temperature and working environment conditions increase the leakage current 

through the cable insulation and so accelerate the ageing of the infrastructure. Some impacts analysis 

are carried out to characterize and model the cables insulation degradation, based only on the 

measurement data from smart meters. Since satisfactory mathematical models based on the physics 

cannot be developed for the application, several supervised machine learning methods are applied to 

access the condition of the electrical system. Case studies are analyzed to compare the accuracy of 

learning methods for different degradation scenarios. The proposed frameworks offer promising 

perspectives for the early identification of LV cable conditions by using SM measurements combined 

to ML approaches, Load Flow computations and Monte Carlo using scenario simulations to calculate 

the network voltages. 

Keywords : Low voltage distribution networks; supervised Machine Learning methods; cable condition 

degradation; Load Flow computation; smart meter; Monte Carlos scenarios; cable insulation wear; 

cables conditions assessment.  


